Читаем Логика для всех. От пиратов до мудрецов полностью

Ко второму уровню сложности можно отнести задачи 8.4, 8.5 и 8.10, в которых ставится вопрос о доказательстве равносильности нескольких утверждений. В задачах 8.5 и 8.10 значение имеет уже не только логическая структура доказательства, но и математическое содержание самих высказываний. Задача 8.11 не столько логическая, сколько комбинаторная; ее последний пункт существенно сложнее остальных задач занятия.

Рассмотрим два высказывания. А: «Число кратно 9», Б: «Сумма цифр числа кратна 9». Для каждого конкретного натурального числа эти высказывания либо одновременно истинны, либо одновременно ложны, поскольку натуральное число делится на 9 тогда и только тогда, когда сумма его цифр делится на 9. Другими словами, высказывания А и Б равносильны. Записывается это так: А⇔Б.

Таблица истинности показывает, когда высказывание «А⇔Б» истинно, а когда ложно:

Изобразим область истинности равносильных высказываний. Если те объекты, для которых истинно высказывание А, находятся в первом круге, а те, для которых истинно высказывание Б, во втором, то те, для которых истинно высказывание А⇔Б, находятся в серой области (рис. 17).

Рис. 17

Заметим, что в рассмотренном выше примере все натуральные числа находятся в закрашенной серым области истинности высказывания А⇔Б. Это и означает, что оно истинно для всех натуральных чисел.

Задача 8.1.1) Известно, что высказывание А ⇔ Б истинно. Что можно сказать об истинности высказываний А ⇒ Б и Б ⇒ А?

2) Известно, что высказывание А ⇒ Б истинно. Можно ли что-то сказать об истинности высказывания А ⇔ Б?

3) Известно, что высказывание А ⇒ Б ложно. Можно ли что-то сказать об истинности высказывания А ⇔ Б?

Приведите для каждого случая примеры подходящих высказываний.

Ответ. 1) Оба высказывания истинны; 2) нет, высказывание А ⇔ Б может быть как истинным (в случаях, если А и Б одновременно истинны или одновременно ложны), так и ложным (в случае, если А ложно, а Б истинно); 3) да, высказывание А Б ложно, поскольку А истинно, а Б ложно.

Решение. Ответить на все три вопроса можно разными способами.

Первый способ: посмотрим на таблицы истинности для А ⇒ Б, Б^Аи А<^Б. Для удобства приведем общую таблицу. 1) А⇔ Б истинно для первой и четвертой строк, для этих строк и А ⇒ Б и Б ⇒ А оба истинны. 2) и 3) решаются аналогично.

Второй способ: посмотрим на иллюстрации высказываний А ⇒ Б, Б ⇒ АиА⇔Бс помощью кругов Эйлера.

1) Область истинности высказывания А⇔Б входит целиком в области истинности высказываний А ⇒ Б и Б ⇒ А.

2) Область истинности высказывания А ⇒ Б частично входит в область истинности высказывания А ⇔ Б, а частично находится за ее пределами. 3) В той области, где высказывание А ⇒ Б ложно, высказывание А ⇔ Б тоже ложно.

Третий способ пригоден только для пункта 2 и опирается на приведение конкретных примеров высказываний (например, из задач 5.2 (п. 1) и 5.2 (п. 2)). А вот то, что мы не можем подобрать всевозможных подходящих примеров в пунктах 1 и 3, еще не доказывает, что таких примеров и вовсе нет.

Задача 8.2. Бабушка печет пирог в те и только те дни, когда ждет гостей.

1) Бабушка печет пирог. Можно ли утверждать, что она сегодня ждет гостей?

2) Бабушка не печет пирог. Можно ли утверждать, что сегодня она не ждет гостей?

Ответ. 1) Да; 2) да.

Решение. Рассмотрим два высказывания. А: «Бабушка сегодня печет пирог», Б: «Бабушка сегодня ждет гостей». Тогда условие означает А⇔Б. В предыдущей задаче получено, что тогда истинно и А ⇒ Б, откуда ясен ответ в пункте 1. Кроме того, истинно и Б ⇒ А. А значит, и «не А» ⇒ «не Б», что мы и используем для доказательства от противного в пункте 2.

Задача 8.3. Равносильны ли высказывания А и Б? Если нет, то следует ли хотя бы одно из них из другого?

1) А: «Некоторые принцессы – красавицы»; Б: «Некоторые красавицы – принцессы».

2) А: «Все принцессы – красавицы»; Б: «Все красавицы – принцессы».

3) А: «Число N кратно 11»; Б: «Сумма цифр числа А, стоящих на четных местах, равна сумме цифр, стоящих на нечетных местах».

4) А: «Число N является квадратом натурального числа»; Б: «У числа N нечетное число делителей».

5) А: «У любой девочки из 6 „А“ больше друзей среди одноклассников, чем у любого мальчика из 6 „А“ среди одноклассниц»; Б: «В 6 „А“ мальчиков больше, чем девочек».

Ответ. 1) Равносильны; 2) нет; 3) нет, но Б ⇒ А; 4) равносильны; 5) нет, но А ⇒ Б.

Решение. Пункты 1 и 2 уже обсуждались в задачах 2.3 и 2.11.

3) Утверждение А ⇒ Б следует из признака делимости на 11; обратное неверно, например, 803 кратно 11, но суммы цифр на четных и нечетных местах не равны друг другу.

4) Объединим делители числа N в пары так, чтобы произведение двух чисел в паре равнялось N. Ясно, что N = n2 равносильно существованию числа п, которое является парным самому себе, при этом число делителей нечетно.

Перейти на страницу:

Все книги серии Школьные математические кружки

Логика для всех. От пиратов до мудрецов
Логика для всех. От пиратов до мудрецов

Четырнадцатая книжка серии «Школьные математические кружки» посвящена логическим задачам и является продолжением ранее вышедшей книжки И. В. Раскиной и Д. Э. Шноля «Логические задачи» (выпуск 11).В книжку вошли разработки десяти занятий математического кружка с примерами задач различного уровня сложности, задачами для самостоятельного решения и методическими указаниями для учителя. Приведен также большой список дополнительных задач. Ко всем задачам приведены ответы и подробные решения или указания к решениям.Особенностью книжки является наличие игровых сценариев к отдельным задачам и целому занятию, реализация которых поможет лучшему освоению материала.Для удобства использования заключительная часть книжки сделана в виде раздаточных материалов. Книжка адресована школьным учителям математики и руководителям математических кружков. Надеемся, что она будет интересна школьникам и их родителям, студентам педагогических вузов, а также всем любителям логики.

Инесса Владимировна Раскина

Математика

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное