Третья фигура и её особые правила
§ 39. Третья фигура простого категорического силлогизма:
М—Р
М—S
——
S—P
Выводы по третьей фигуре применяются всюду там, где предметом нашего интереса является
Однако кроме случаев, когда познание частного есть только ступенька к познанию общего, имеется множество случаев, когда частное оказывается предметом нашего интереса и познания уже не в качестве способа познания общего, но и само по себе, т. е. именно в качестве
Когда наша мысль движется от частного к общему так, что интерес к частному есть лишь ступень к познанию общего, мы применяем различные формы так называемых индуктивных умозаключений. Формы эти будут рассмотрены нами в своём месте (см. гл. XI).
Когда предметом нашей мысли оказывается частное само по себе, а не в качестве средства к познанию общего, мы пользуемся различными модусами
Примеры силлогизмов третьей фигуры:
Все китообразные — млекопитающие. | Ни один паук—не насекомое. | |
Все китообразные — водные животные. | Все пауки — членистоногие. | |
————————————— | —————————— | |
Некоторые водные животные — млекопитающие. | Некоторые членистоногие не насекомые. |
В первом примере бо́лыпая посылка удостоверяет, что все М принадлежат к классу Р, меньшая — что все М принадлежат к классу S (см. рис. 63).
Рис. 63
На рисунке представлены отношения между понятиями в посылках. Из рисунка видно, что весь объём М входит как часть и в объём Р и в объём S. Но так как из посылок не видно, какую именно часть объёма Р и какую именно часть объёма S занимает объём М, то в выводе мы не можем утверждать, что
Во втором примере бо́льшая посылка устанавливает, что ни одно М не принадлежит к числу Р. Меньшая посылка устанавливает, что все М принадлежат к S (см. рис. 64).
Рис. 64
На рисунке изображены отношения между понятиями в посылках. Из рисунка видно, что весь объём класса М находится вне всего объёма класса Р и что тот же весь объём класса М входит как часть в объём класса S. Так как, будучи все членистоногими, пауки в то же время не являются насекомыми, то отсюда следует вывод, что некоторая часть членистоногих (пауки) — не насекомые: некоторые S не принадлежат к Р.
И в том и в другом примере третьей фигуры вывод получается
Часто третья фигура применяется для доказательства частичной совместимости двух понятий, о которых почему-либо принято думать, будто они вовсе несовместимы. Пусть кто-нибудь полагает, будто ни одно млекопитающее не кладёт яиц. Полагающий таким образом, очевидно, утверждает полную несовместимость понятий «млекопитающее» и «яйцекладущее». Мысль его может быть выражена посредством общего суждения «ни одно млекопитающее не есть яйцекладущее».
Чтобы опровергнуть это общее суждение, достаточно доказать истинность противоречащего ему
Таким частным суждением будет, очевидно, суждение «некоторые млекопитающие — яйцекладущие». Суждение это может быть выведено по третьей фигуре силлогизма:
Все утконосы — яйцекладущие.
Все утконосы — млекопитающие,
————————————————
Некоторые млекопитающие — яйцекладущие.