Читаем ЛОГИКА полностью

Ни одно ластоногое не есть рыба.М—Р
Все тюлени—ластоногие.S—М
———————————————
Ни один тюлень не есть рыба.S—P

Ввиду совершенной искусственности четвёртой фигуры отметим только важнейшие её особенности без подробного их рассмотрения и выведения.

Выводы по четвёртой фигуре могут быть частноутвердительные, общеотрицательные и частноотрицательные.Общеутвердительных выводов четвёртая фигура (так же как вторая и третья) не даёт. Общий вывод по четвёртой фигуре может быть только отрицательный. При утвердительности большей посылки меньшая посылка в четвёртой фигуре должна быть общей. При отрицательности одной из посылок большая посылка в четвёртой фигуре должна быть общей.

Правильные модусы четвёртой фигуры: AAI, АЕЕ, IAI, ЕАО, ЕIO. Их искусственные названия — Bramantip, Camenes, Dimaris, Fesapo, Fresison.

Таким образом, учитывая возможность добавочных пяти модусов четвёртой фигуры, получаем всего девятнадцать правильных модусов простого категорического силлогизма.

<p>Сведение всех фигур простого категорического силлогизма к первой фигуре</p>

§ 44. Каждая из фигур со всеми своими модусами самостоятельна и имеет свою особую область применения. Но так как отношение между меньшим и бо́льшим терминами, составляющее вывод, определяется отношениями между всеми тремя понятиями силлогизма и так как отношения эти могут раскрываться в различном порядке — смотря по тому, с какого понятия. мы начнём рассмотрение, — то вывод, сделанный по какой-нибудь фигуре силлогизма, может быть сделан и по любой другой (если только этому не противоречит качество и количество вывода). Такое изменение вывода, сделанного по какой-либо фигуре силлогизма, в вывод, сделанный по другой фигуре, называется сведением.

В логике подробно устанавливаются правила сведения всех фигур к первой фигуре — ввиду того значения, какое выводы по первой фигуре, особенно модус Barbara, имеют в научном и повседневном мышлении.

Обычно выводы по третьей фигуре сводятся к выводам по первой фигуре путём обращения одной из посылок.

Например, вывод по третьей фигуре

Все киты — млекопитающие.М—Р
Все киты — водные животные.S—М
————————————————————
Некоторые водные животные — млекопитающиеS—P

может быть изменён в вывод по первой фигуре. Для этого, оставив бо́льшую посылку без изменения, обращаем меньшую посылку: «все киты — водные животные». Обращение общеутвердительного суждения, выражающего подчинение понятия S понятию Р даёт, как известно, суждение частноутвердительное: «некоторые водные животные — киты». Теперь соединим оставленную без изменения большую посылку с обращённой меньшей:

Все киты—млекопитающие.

Некоторые водные животные—киты.

В посылках этих термины расположены по схеме уже не третьей, а первой фигуры:

М—Р

S—M

———

S—P

Вывод по первой фигуре (по модусу Darii) будет: «некоторые водные животные — млекопитающие». Как видим, вывод —тот же самый, который в первом случае был сделан по третьей фигуре (по модусу Darapti).

§ 45. Существует более сложный способ сведения. Способ этот применяется при сведении некоторых выводов по второй и по третьей фигуре к выводу по первой.

Рассмотрим силлогизм:

Все планеты обращаются вокруг солнца.Р—М
Некоторые светила не обращаются вокруг солнца.S—М
————————————————————
Некоторые светила — не планеты.S—P

Силлогизм этот, как видно из расположения терминов, есть вывод по второй фигуре (модус Ваrосо). Для сведения его к выводу по первой фигуре будем рассуждать следующим образом. Допустим, что заключение нашего вывода ложно, т. е. допустим, что все светила — планеты. Оставим бо́льшую посылку без изменения и присоединим к ней в качестве меньшей посылки суждение «все светила — планеты», т. е. суждение, противоречащее выводу:

Все планеты обращаются вокруг солнца.

Все светила—планеты.

Посылки эти образуют посылки правильного вывода по первой фигуре. Самый вывод получается, очевидно, по модусу Barbara:

Все планеты обращаются вокруг солнца.М—Р
Все светила—планеты.S—М
————————————————————
Все светила обращаются вокруг солнца.S—P
Перейти на страницу:

Похожие книги

Сочинения
Сочинения

Иммануил Кант – самый влиятельный философ Европы, создатель грандиозной метафизической системы, основоположник немецкой классической философии.Книга содержит три фундаментальные работы Канта, затрагивающие философскую, эстетическую и нравственную проблематику.В «Критике способности суждения» Кант разрабатывает вопросы, посвященные сущности искусства, исследует темы прекрасного и возвышенного, изучает феномен творческой деятельности.«Критика чистого разума» является основополагающей работой Канта, ставшей поворотным событием в истории философской мысли.Труд «Основы метафизики нравственности» включает исследование, посвященное основным вопросам этики.Знакомство с наследием Канта является общеобязательным для людей, осваивающих гуманитарные, обществоведческие и технические специальности.

Иммануил Кант

Философия / Проза / Классическая проза ХIX века / Русская классическая проза / Прочая справочная литература / Образование и наука / Словари и Энциклопедии
1. Объективная диалектика.
1. Объективная диалектика.

МатериалистическаяДИАЛЕКТИКАв пяти томахПод общей редакцией Ф. В. Константинова, В. Г. МараховаЧлены редколлегии:Ф. Ф. Вяккерев, В. Г. Иванов, М. Я. Корнеев, В. П. Петленко, Н. В. Пилипенко, Д. И. Попов, В. П. Рожин, А. А. Федосеев, Б. А. Чагин, В. В. ШелягОбъективная диалектикатом 1Ответственный редактор тома Ф. Ф. ВяккеревРедакторы введения и первой части В. П. Бранский, В. В. ИльинРедакторы второй части Ф. Ф. Вяккерев, Б. В. АхлибининскийМОСКВА «МЫСЛЬ» 1981РЕДАКЦИИ ФИЛОСОФСКОЙ ЛИТЕРАТУРЫКнига написана авторским коллективом:предисловие — Ф. В. Константиновым, В. Г. Мараховым; введение: § 1, 3, 5 — В. П. Бранским; § 2 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 4 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 6 — В. П. Бранским, Г. М. Елфимовым; глава I: § 1 — В. В. Ильиным; § 2 — А. С. Карминым, В. И. Свидерским; глава II — В. П. Бранским; г л а в а III: § 1 — В. В. Ильиным; § 2 — С. Ш. Авалиани, Б. Т. Алексеевым, А. М. Мостепаненко, В. И. Свидерским; глава IV: § 1 — В. В. Ильиным, И. 3. Налетовым; § 2 — В. В. Ильиным; § 3 — В. П. Бранским, В. В. Ильиным; § 4 — В. П. Бранским, В. В. Ильиным, Л. П. Шарыпиным; глава V: § 1 — Б. В. Ахлибининским, Ф. Ф. Вяккеревым; § 2 — А. С. Мамзиным, В. П. Рожиным; § 3 — Э. И. Колчинским; глава VI: § 1, 2, 4 — Б. В. Ахлибининским; § 3 — А. А. Корольковым; глава VII: § 1 — Ф. Ф. Вяккеревым; § 2 — Ф. Ф. Вяккеревым; В. Г. Мараховым; § 3 — Ф. Ф. Вяккеревым, Л. Н. Ляховой, В. А. Кайдаловым; глава VIII: § 1 — Ю. А. Хариным; § 2, 3, 4 — Р. В. Жердевым, А. М. Миклиным.

Александр Аркадьевич Корольков , Арнольд Михайлович Миклин , Виктор Васильевич Ильин , Фёдор Фёдорович Вяккерев , Юрий Андреевич Харин

Философия