Читаем ЛОГИКА полностью

Так как суждение, противоречащее общему суждению, будет всегда частным и так как частичная совместимость понятий устанавливается в частном суждении, то выводы третьей фигуры, применяемой либо для опровержения общих суждений через противоречащие им частные, либо для доказательства частичной совместимости понятий, могут быть только частными.

§ 40. Из этих задач вытекает особое правило третьей фигуры. Правило это формулируется так: меньшая посылка должна быть утвердительной. И действительно, если бы меньшая посылка третьей фигуры была отрицательной, то вывод также должен был бы быть отрицательным. Но это значит, что больший термин, как сказуемое отрицательного суждения, должен был бы быть распределён в выводе. Однако, чтобы быть распределённым в выводе, больший термин должен быть распределён в большей посылке. Так как мы предположили, что меньшая посылка отрицательная, то бо́льшая должна быть утвердительной. Но так как в третьей фигуре больший термин — предикат, то как предикат утвердительного суждения, выражающего подчинение понятия S понятию Р, он не может быть распределён, и, стало быть, вывод о третьей фигуре в случае отрицательности меньшей посылки невозможен.

§ 41. Исключив из числа шестнадцати арифметически возможных модусов третьей фигуры все модусы, противоречащие общим правилам всех фигур и специальному правилу третьей, получаем шесть модусов третьей фигуры: АА, ЕА, IA, AI, ОА, EI.

В модусе АА вывод получается частноутвердительный (I), и всё строение модуса может быть обозначено AAI.

Пример: «Все киты — млекопитающие, все киты — водные животные, следовательно, некоторые водные животные — млекопитающие».

В модусе ЕА вывод получается частноотрицательный (О), и всё строение модуса может быть обозначено ЕАО.

Пример: «Ни один гриб не имеет хлорофила, все грибы — растения, следовательно, некоторые растения не имеют хлорофила».

В модусе IA вывод получается частноутвердительный (I), и всё строение модуса может быть обозначено IAI.

Пример: «Некоторые планеты имеют спутников, все планеты вращаются вокруг солнца, следовательно, некоторые тела, вращающиеся вокруг солнца, имеют спутников».

В модусе AI вывод получается частноутвердительный (I), и всё строение модуса может быть обозначено AII.

Пример: «Все бобры — водные животные, некоторые бобры строят себе домики для жилья, следовательно, некоторые животные, строящие себе домики для жилья, водные животные».

В модусе ОА вывод получается частноотрицательный (О), и всё строение модуса может быть обозначено ОАО.

Пример: «Некоторые планеты не имеют спутников, все планеты вращаются вокруг солнца, следовательно, некоторые тела, вращающиеся вокруг солнца, не имеют спутников».

Наконец, в модусе EI вывод получается также частноотрицательный (О), и всё строение модуса может быть обозначено ЕIO.

Пример: «Ни один аспирант не есть студент, некоторые аспиранты обязаны слушать лекции, следовательно, некоторые лица, обязанные слушать лекции, — не студенты».

Условные имена шести модусов третьей фигуры следующие: Darapti, Felapton, Disamis, Datisi, Bocardo, Ferison.

Таким образом, все три фигуры простого категорического силлогизма дают всего четырнадцать правильных модусов. Другие модусы в этих фигурах невозможны, т. е. не могут быть основанием для правильного вывода.

<p>Логический ход умозаключения по третьей фигуре</p>

§ 42. Умозаключения по третьей фигуре имеют в самом логическом ходе вывода особенности, отличающие их от умозаключений первой и второй фигуры. От умозаключений второй фигуры, в которых логический ход умозаключения основывается на сличении предикатов обеих посылок, умозаключения третьей фигуры отличаются тем, что в них, как и в умозаключениях первой фигуры, сличаются субъекты обеих посылок.

Рассмотрим умозаключение:

Все бобры — водные животные.М—Р
Все бобры — млекопитающие.М—S
————————————————— ———
Некоторые млекопитающие — водные животные.S—P

Принадлежность части млекопитающих к водным животным выводится из выясненной в посылках принадлежности всех бобров и к водным животным и к млекопитающим.

В то же время умозаключения третьей фигуры отличаются и от умозаключений первой фигуры. В умозаключениях первой фигуры логический ход вывода состоит в том, что, установив в меньшей посылке принадлежность какого-нибудь предмета к известной группе предметов, мы переносим на отдельный предмет, мыслимый в меньшей посылке, предикат, характеризующий группу в целом. Перенесение это основывается на том, что предикат большей посылки есть не только предикат всей группы в целом, но вместе с тем и предикат каждого её члена порознь.

Рассмотрим силлогизм:

Все амфибии — позвоночные.

Все лягушки — амфибии.

——————————

Все лягушки — позвоночные.

Перейти на страницу:

Похожие книги

Сочинения
Сочинения

Иммануил Кант – самый влиятельный философ Европы, создатель грандиозной метафизической системы, основоположник немецкой классической философии.Книга содержит три фундаментальные работы Канта, затрагивающие философскую, эстетическую и нравственную проблематику.В «Критике способности суждения» Кант разрабатывает вопросы, посвященные сущности искусства, исследует темы прекрасного и возвышенного, изучает феномен творческой деятельности.«Критика чистого разума» является основополагающей работой Канта, ставшей поворотным событием в истории философской мысли.Труд «Основы метафизики нравственности» включает исследование, посвященное основным вопросам этики.Знакомство с наследием Канта является общеобязательным для людей, осваивающих гуманитарные, обществоведческие и технические специальности.

Иммануил Кант

Философия / Проза / Классическая проза ХIX века / Русская классическая проза / Прочая справочная литература / Образование и наука / Словари и Энциклопедии
1. Объективная диалектика.
1. Объективная диалектика.

МатериалистическаяДИАЛЕКТИКАв пяти томахПод общей редакцией Ф. В. Константинова, В. Г. МараховаЧлены редколлегии:Ф. Ф. Вяккерев, В. Г. Иванов, М. Я. Корнеев, В. П. Петленко, Н. В. Пилипенко, Д. И. Попов, В. П. Рожин, А. А. Федосеев, Б. А. Чагин, В. В. ШелягОбъективная диалектикатом 1Ответственный редактор тома Ф. Ф. ВяккеревРедакторы введения и первой части В. П. Бранский, В. В. ИльинРедакторы второй части Ф. Ф. Вяккерев, Б. В. АхлибининскийМОСКВА «МЫСЛЬ» 1981РЕДАКЦИИ ФИЛОСОФСКОЙ ЛИТЕРАТУРЫКнига написана авторским коллективом:предисловие — Ф. В. Константиновым, В. Г. Мараховым; введение: § 1, 3, 5 — В. П. Бранским; § 2 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 4 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 6 — В. П. Бранским, Г. М. Елфимовым; глава I: § 1 — В. В. Ильиным; § 2 — А. С. Карминым, В. И. Свидерским; глава II — В. П. Бранским; г л а в а III: § 1 — В. В. Ильиным; § 2 — С. Ш. Авалиани, Б. Т. Алексеевым, А. М. Мостепаненко, В. И. Свидерским; глава IV: § 1 — В. В. Ильиным, И. 3. Налетовым; § 2 — В. В. Ильиным; § 3 — В. П. Бранским, В. В. Ильиным; § 4 — В. П. Бранским, В. В. Ильиным, Л. П. Шарыпиным; глава V: § 1 — Б. В. Ахлибининским, Ф. Ф. Вяккеревым; § 2 — А. С. Мамзиным, В. П. Рожиным; § 3 — Э. И. Колчинским; глава VI: § 1, 2, 4 — Б. В. Ахлибининским; § 3 — А. А. Корольковым; глава VII: § 1 — Ф. Ф. Вяккеревым; § 2 — Ф. Ф. Вяккеревым; В. Г. Мараховым; § 3 — Ф. Ф. Вяккеревым, Л. Н. Ляховой, В. А. Кайдаловым; глава VIII: § 1 — Ю. А. Хариным; § 2, 3, 4 — Р. В. Жердевым, А. М. Миклиным.

Александр Аркадьевич Корольков , Арнольд Михайлович Миклин , Виктор Васильевич Ильин , Фёдор Фёдорович Вяккерев , Юрий Андреевич Харин

Философия