Установив в меньшей посылке принадлежность лягушек к амфибиям и установив в большей посылке, что принадлежность к позвоночным есть свойство не только всей группы амфибий в целом, но и каждого члена группы амфибий, мы можем приписать всем лягушкам принадлежность к позвоночным.
В умозаключениях третьей фигуры логический ход вывода другой. Хотя в заключениях этой фигуры общими посылками обосновывается частный вывод, смысл умозаключения состоит не в том только, чтобы высказать предикат относительно некоторых членов группы. Когда из посылок «все бобры — водные животные», «все бобры — млекопитающие» выводят, что «некоторые млекопитающие — водные животные», смысл этого заключения не только в том, чтобы известной части млекопитающих приписать принадлежность к водным животным. Смысл заключения в том, чтобы предикат «водные животные» указать не только в качестве предиката к субъекту «некоторые млекопитающие», но также в качестве возможного предиката, или определения группы млекопитающих.То
То, что заключение силлогизма третьей фигуры может быть только
Применение силлогизмов третьей фигуры
Эпикур был атомистом.
Эпикур утверждал возможность свободы.
—————————————————————
След., некоторые атомисты утверждали возможность свободы.
В этом силлогизме субъектом заключения «некоторые атомисты утверждали возможность свободы» является, несмотря на частный характер заключения, именно группа в целом:
Четвёртая фигура и её особые правила
§ 43. Рассмотренные четырнадцать правильных модусов были установлены основателем науки логики, древнегреческим философом Аристотелем (384—322 до н. э.). Уже ближайшие продолжатели логических работ Аристотеля обратили внимание на то, что в первой фигуре кроме указанных Аристотелем четырёх модусов возможны ещё пять. Модусы эти возможны в случае, если средний термин является предикатом в большей посылке и субъектом в меньшей. (В аристотелевской первой фигуре средний термин является, напротив, субъектом в большей посылке и предикатом — в меньшей.)
Спустя 500 лет после Аристотеля учёный Гален выделил правильные модусы, получающиеся при таком расположении терминов, в новую — четвёртую — фигуру.
Схема четвёртой фигуры:
Р—М
М—S
———
S—P
Хотя четвёртая фигура теоретически возможна и даёт пять правильных модусов, в действительном мышлении выводы по четвёртой фигуре не встречаются. Искусственность четвёртой фигуры состоит в том, что положение меньшего и большего терминов в
Например:
Bce тюлени — ластоногие. | М—Р | |
Ни одно ластоногое не есть рыба. | Р—М | |
———————————— | ——— | |
Ни одна рыба не есть тюлень. | М—S |
Здесь естественным был бы, конечно, вывод по первой фигуре: