Читаем Квантовая хромодинамика: Введение в теорию кварков и глюонов полностью

где обозначает спиновое состояние, ± - соответствующие волновые функции, а a± и a+± - операторы рождения и уничтожения частиц (+) и античастиц (-). Коммутационные соотношения между операторами (символ [ , ] для фермионов должен интерпретироваться как антикоммутатор) имеют вид

[

a

 

(k,),a

+

(k',')

]

±

±

=

 

2

'

k

0

(

k

-

k'

) ,

 

[

a

 

 ,a

+

]

+

-

=

0 ;

они могут быть использованы для проверки того, что разность между хронологическим и нормальным произведениями операторов

T

0

(x

 

)

0

(x

 

) -

:

0

(x

 

)

0

(x

 

)

:

0

(x

 

)

0

(x

 

)

1

1

2

2

1

1

2

2

1

1

2

2

представляет собой c-число, называемое сверткой. Отсюда видно, что свертка совпадает с вакуумным средним от T-произведения (пропагатором):

0

(x

 

)

0

(x

 

)

 =

0

|

T

0

(x

 

)

0

(x

 

)

|

0

 

T

0

(x

 

)

0

(x

 

)

 

.

1

1

2

2

1

1

2

2

1

1

2

2

0

Повторяя эту процедуру многократно, скажем для выражения (2.1), получим, что хронологическое произведение TL0int…L0int можно записать в виде комбинации сверток, умноженных на нормально упорядоченные произведения операторов. Это утверждение и составляет содержание теоремы Вика. Матричные элементы от этих выражений легко вычисляются, и для каждого члена разложения S - матрицы по теории возмущений получается вполне определенный результат. Фейнмановские правила диаграммной техники автоматически учитывают все упомянутые выше требования и позволяют прямо по соответствующим фейнмановским графикам записать окончательный результат. Правила диаграммной техники для квантовой хромодинамики приведены в приложении Г (см. также § 42, в котором некоторые из них выводятся).

Глава II. КВАНТОВАЯ ХРОМОДИНАМИКА КАК ТЕОРИЯ ПОЛЯ

§ 3. Калибровочная инвариантность

Рассмотрим поля, введенные в гл. I при построении КХД, а именно цветовой триплет кварковых полей q1(х) для кварка каждого аромата и октет глюонов Ва(х). Кварковые поля образуют фундаментальное представление группы SU(3), т.е. если U — унитарная унимодулярная матрица размерности 3x3, то поля qj преобразуются по формуле

U

:

q

j

(x) ->

U

jk

q

k

(x) .

k

Любую матрицу U группы SU(3) можно записать, исходя из восьми генераторов алгебры Ли ta (матрицы ta приведены в приложении В), в виде

U

=

exp

{

-ig

a

t

a

}

,

 

a

где а — параметры группы, а множитель g введен для удобства. Представляя триплет qj в виде трехкомпонентного столбца, получаем следующую формулу преобразования:

q(x) -> e-igata q(x) .

Для полей B рассмотрим присоединенное (размерности 8) представление группы SU(3). Генераторами группы SU(3) на этом представлении будут матрицы Ca, матричные элементы которых имеют вид Cabc = -ifabc (значения констант fabc приведены в приложении В). Поля B преобразуются по формуле

B(x) -> e-gaCaB

Если параметры группы a представляют собой константы, не зависящие от пространственно-временной точки x, то лагранжиан квантовой хромодинамики, выписанный в гл. I, оказывается инвариантным по отношению к глобальным преобразованиям группы SU(3)3a), Однако, как мы знаем из квантовой электродинамики (КЭД), эти преобразования полезно обобщить на случай, когда параметры группы a(x) зависят от пространственно-временной точки x. При этом (локальные) калибровочные преобразования определяются в виде

3a Преобразования называют гпобальными, если определяющие их параметры группы представляют собой константы, независящие от пространственно-временной точки x. — Прим. перев.

q(x)

->

e

-iga(x)ta

(3.1а)

Аналогично обобщаются обычные преобразования КЭД для калибровочных полей:

B

(x)

->

e

-iga(x)Ca

B

(x) -

(x)

,

(3.1 б)

или в случае инфинитезимальных преобразований

q

j

(x)

->

q

j

(x)

-

ig

a

(x)

t

a

jk

q

k

(x),

 

a,k

(3.1 в)

B

(x)->B

(x)+g

f

 

 

(x)B

-

 

(x).

a

a

abc

b

c

 

a

 

b,c

В дальнейшем будет предполагаться инвариантность лагранжиана КХД относительно преобразований (3.1) (в действительности лагранжиан (1.11) обладает этим свойством по построению). Это требование приводит к тому, что поля в лагранжиане появляются в строго определенных комбинациях. Из последующего рассмотрения станет ясно, что лагранжиан (1.11) является фактически наиболее общим лагранжианом, инвариантным по отношению к преобразованиям (3.1) и не содержащим констант размерности массы в отрицательной степени (ср. с § 38 и следующими за ним параграфами).

Рассмотрим, как при калибровочных преобразованиях преобразуются производные от полей, например производная q(x). Из (3.1в) вытекает следующий закон преобразования производной:

q

j

(x)->

q

j

(x)

 

-

ig

t

a

 

(x)

q

k

(x)

jk

a

-

ig

t

a

(

 

(x))q

k

(x).

jk

 

a

Мы видим, что она преобразуется иначе, чем сами поля. Требование инвариантности лагранжиана по отношению к калибровочным преобразованиям приводит к тому, что все производные от полей должны появляться только в ковариантных комбинациях:

D

q

j

(x)

{

 

-ig

B

(x)t

a

}

q

k

(x);

 

 

jk

 

a

jk

 

k

 

a

(3.2)

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука