Читаем Курс теоретической астрофизики полностью

Свечение газовых туманностей вызывается излучением горячих звёзд. Туманность поглощает высокочастотное излучение звезды и перерабатывает его в кванты меньших частот. Так возникают яркие линии в спектрах туманностей. В принципе таким же путём (хотя в некоторых отношениях и более сложным) возникают яркие линии в спектрах звёзд типов Be, Вольфа — Райе, новых и других объектов. Поэтому результаты изучения газовых туманностей широко используются в разных разделах астрофизики.

Идущий в газовых туманностях процесс переработки высокочастотного излучения звёзд в кванты меньших частот говорит о сильном отклонении состояния туманностей от термодинамического равновесия. Это резко, отличает туманности от звёздных атмосфер, для которых предположение о наличии термодинамического равновесия оказывается достаточным как первое приближение к действительности. При изучении туманностей нам уже нельзя будет пользоваться формулами Больцмана и Саха для вычисления количества атомов в разных состояниях и формулой Планка для вычисления интенсивности излучения в разных частотах. В каждом отдельном случае указанные величины придётся определять путём рассмотрения тех элементарных процессов, которые протекают в реальных туманностях. Мы обычно будем пользоваться предположением, что туманности стационарны, т.е. распределение атомов по состояниям и поле излучения в туманности не меняются с течением времени. При этом, естественно, нам понадобятся вероятности различных элементарных процессов (т.е. вероятности фотоионизаций, рекомбинаций, столкновений и т.д.), которые вычисляются в теоретической физике.

§ 22. Механизм свечения туманностей

1. Наблюдательные данные.

Подробное изложение результатов наблюдений газовых туманностей содержится в ряде монографий ([1] — [3] и др.). Мы сейчас обратим внимание лишь на основные факты.

Газовые туманности в нашей Галактике делятся на две группы. К первой принадлежат так называемые планетарные туманности. При наблюдениях в телескоп они чаще всего представляются в виде круглых или овальных дисков, напоминающих диски планет, а также в виде колец. В центре планетарной туманности находится горячая звезда, называемая обычно ядром туманности. Вторую группу составляют диффузные туманности, не имеющие правильной формы. В самой диффузной туманности или около неё наблюдаются звёзды ранних спектральных классов (одна или несколько).

Размеры отдельных планетарных туманностей известны с небольшой точностью вследствие ненадёжности параллаксов. Средний диаметр планетарной туманности составляет около 10 000 астрономических единиц. Размеры диффузных туманностей часто гораздо больше.

Спектры газовых туманностей состоят из отдельных ярких линий на слабом непрерывном фоне. Яркие линии принадлежат водороду, гелию, ионизованному гелию, а также ряду других атомов и ионов. Однако наиболее характерными для спектров газовых туманностей являются так называемые главные небулярные линии 𝑁₁ и 𝑁₂ с длинами волн 5006 и 4959 Å соответственно. Раньше эти линии приписывали неизвестному на Земле элементу «небулию», однако в 1928 г. Боуэн показал, что они являются запрещёнными линиями дважды ионизованного кислорода. В спектрах газовых туманностей наблюдается также много других запрещённых линий.

Число известных в настоящее время планетарных туманностей составляет несколько сотен. Диски многих из них не видны в телескопы, и заключение об их природе было сделано по виду спектра. Это либо очень маленькие либо очень далёкие туманности. Число известных диффузных туманностей значительно возросло благодаря работам Г. А. Шайна и В. Ф. Газе. Делая снимки неба в узком участке спектра, включающем в себя линию 𝙷α, они обнаружили большое количество слабо светящихся диффузных туманностей.

Несмотря на то, что энергия, излучаемая газовыми туманностями, заключена преимущественно в отдельных спектральных линиях, светимости туманностей очень велики. Так, средняя абсолютная фотографическая величина планетарных туманностей равна 𝑀𝑛=-0,5. Важно отметить, что планетарные туманности, как правило, значительно ярче своих ядер, т.е. 𝑀-𝑀𝑛>0. Иногда эта разность доходит до семи звёздных величин. В среднем же 𝑀-𝑀𝑛≈3.

Звёзды, вызывающие свечение газовых туманностей, принадлежат к самым ранним спектральным классам. Примерно половина ядер планетарных туманностей обладает спектрами типа WR (однако эти звёзды отличаются от обычных звёзд Вольфа — Райе гораздо меньшей светимостью). Примерно четверть ядер планетарных туманностей имеет спектры без каких-либо заметных линий. Вычисления показывают, что такими спектрами могут обладать звёзды с большими ускорениями силы тяжести на поверхности и высокими температурами (см. § 14). Остальные ядра планетарных туманностей относятся к спектральным классам O и Of.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука