Читаем Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры полностью

Бесконечно малая величина была и чем-то, и ничем: достаточно большая для применения в математике, но и достаточно малая, чтобы исчезнуть, когда вам это необходимо. Рассмотрим в качестве иллюстрации окружность, изображенную на рисунке ниже. В нее вписан двенадцатиугольник — фигура с 12 сторонами, состоящая из 12 идентичных треугольников с общей вершиной, совокупная площадь которых примерно равна площади круга. Если я построю в этой окружности многоугольник с большим числом сторон, содержащий большее количество более узких треугольников, их совокупная площадь еще сильнее приблизится к площади круга. Если я продолжу увеличивать количество сторон, в предельном случае я получу многоугольник с бесконечным количеством сторон, содержащих бесконечное количество бесконечно узких треугольников. Площадь каждого такого треугольника представляет собой бесконечно малую величину, но их совокупная площадь равна площади круга.

В предыдущих главах мы уже дважды встречались с немецким астрономом Иоганном Кеплером. Это именно он понял, что планеты движутся по эллиптическим орбитам, и это он побывал на одиннадцати свиданиях, прежде чем нашел вторую жену. Когда Кеплер сделал предложение будущей фрау К., оставался такой пустяк, как организация свадебной церемонии. Покупая вино, ученый увидел, что виноторговцы определяют объем полной бочки вина, вставляя в нее по диагонали прут через наливное отверстие, расположенное посредине боковой стороны бочки. Это был грубый, приближенный метод, и он совсем не понравился Кеплеру, поскольку прут одной и той же длины подходил для бочек разных размеров, как показано на рисунке ниже.

Измерение объема винных бочек

Кеплер начал размышлять над тем, как точнее вычислить объем бочки, для того чтобы определить, в бочке какой формы было бы больше всего вина при фиксированной длине прута[143]. Вдохновленный идеями Архимеда, Кеплер разработал метод, в соответствии с которым разделил каждую бочку на бесконечное количество бесконечно малых фигур, объем которых можно было рассчитать. Затем он доказал, что для прута длиной l, проходящего от наливного отверстия до дальнего угла бочки, бочка будет иметь максимальный объем, если ее ширина равна . Кеплер оказался первым представителем целого поколения математиков, использовавших бесконечно малые величины в процессе вычисления площадей и объемов. Среди математиков разных стран, от Англии до Италии, начался бурный рост активности в этой области, что отображало самый значительный сдвиг в математической культуре со времен древних греков — ярых приверженцев концепций, имеющих логический смысл. Теперь же логическая строгость была отброшена, уступив место тому, что давало результаты. Бесконечно малые величины представляли собой нечто неопределенное, что существовало и не существовало одновременно. Но никто не собирался отказываться от них.

Бесконечно малые величины позволили разработать чрезвычайно эффективный метод определения касательной — линии, которая касается кривой в определенной точке, но не пересекает ее. Представьте, что нам необходимо найти касательную в точке Р к кривой, изображенной на рисунке ниже. Стратегия построения касательной состоит в том, чтобы провести приближенную прямую в соответствующей точке, а затем улучшать приближение до тех пор, пока она не совпадет с искомой прямой. Мы можем сделать это, нарисовав линию, проходящую через точку Р и пересекающую кривую в расположенной рядом точке Q, а затем смещать эту точку все ближе и ближе к точке Р. Когда точка Q совпадет с точкой Р, полученная линия будет касательной к данной кривой в точке Р.

Аппроксимация касательной

Как мы уже знаем, градиент прямой линии — это отношение расстояния, покрытого прямой по вертикали, к расстоянию по горизонтали, а градиент кривой в определенной точке — это градиент касательной в этой точке. Касательные интересовали математиков только из-за градиентов. На представленном выше рисунке градиент линии, проходящей через точки P и Q, равен ∆y/∆x. (Греческая буква ∆ («дельта») — это математический символ, которым обозначаются малые приращения.) По мере приближения точки Q к точке Р значение ∆y/∆x приближается к градиенту касательной в точке Р. Но здесь возникает одна проблема. Если точка Q действительно совпадет с точкой Р, тогда ∆y = 0 и ∆x = 0, а это значит, что градиент кривой в точке Р равен 0/0. Но ведь это некорректная математическая операция! Арифметические правила запрещают деление на ноль! Проблему можно решить, удерживая точку Q на бесконечно малом расстоянии от точки Р. Сделав это, мы сможем сказать, что, когда точка Q приближается к точке Р на бесконечно малое расстояние, значение ∆y/∆x становится бесконечно близким к градиенту кривой в точке Р.

Перейти на страницу:

Похожие книги