Поскольку теперь я полностью «заправила бак» (отрицательный полюс своего мобильника) электронами, а положительный полюс электронов не содержит, тем самым между двумя полюсами создается электрическое напряжение. Давайте представим электрическое напряжение как перепад высот для потока электронов по аналогии с плотиной на реке. Загрузить отрицательный полюс электронами – все равно что поднять воду снизу наверх. Если теперь открыть шлюз, вода водопадом грохнется вниз. Именно это и происходит, когда я вынимаю зарядный кабель. При пользовании мобильником химическая реакция поворачивается вспять: принятые электроны снова отдаются. Теперь в качестве электрического тока они носятся по всему мобильнику. Реакция, противоположная восстановлению, называется окислением. Окисление – это химическая реакция, при которой электроны отдаются.
Теперь, когда отданные электроны стимулируют работу моего мобильника, литий-ионы отправляются обратно через электролит. На другой стороне, на положительном полюсе, электроны и литий– ионы снова встречаются. Когда все электроны возвращаются на другую сторону, батарейка оказывается пуста, и все можно начинать сначала!
Теперь давайте вернемся к путанице с терминами «катод» и «анод». В батарейке, перезагружать которую я не могу, катод – это всегда положительный полюс, а анод – отрицательный. Но в перезагружаемых батарейках это верно лишь наполовину, ведь мы только что видели, что зарядка и разрядка – это два противоположных химических процесса, поэтому определение катода и анода здесь следует уточнить. Анод – это электрод, на котором происходит окисление, а катод – электрод, на котором происходит восстановление.
При зарядке мобильника на отрицательном полюсе происходит восстановление, на положительном – окисление. Когда батарея разряжается – наоборот. Таким образом, окисление и восстановление всегда идут параллельно и никогда не происходят поодиночке. Здесь, как в межличностных отношениях, действует принцип «брать и давать»: брать = окисление (по-английски
Бытует мнение, что прежде, чем заряжать мобильник, нужно по возможности разряжать его до конца и следить за тем, чтобы он не слишком долго оставался на зарядке. Это верно для никелевых батареек – тех, например, что в пультах дистанционного управления для телевизоров, старых свинцово-кислотных батареек это тоже касается. А современные литий-ионные батареи можно оставлять подключенными к зарядному устройству сколь угодно долго, потому что они устроены так, что зарядка автоматически останавливается, когда аккумулятор заряжен. Иначе смартфон стал бы довольно опасной штукой. И даже, было дело, действительно стал таковой, когда в 2016 году у пользователей начал вдруг взрываться Samsung Galaxy Note 7. Внутри батарейки вещества, буквально наполненные энергией, надежно защищены от внешнего мира и потенциальных реагирующих веществ. Но при экстремальном нагревании, повреждениях корпуса батарейки или конструктивных дефектах, которые ведут к перегрузке, возникают неприятности. В сочетании с входящими в состав электролита легковоспламеняющимися растворителями получается та еще мини-бомба.
Одному из создателей литий-ионной батарейки, Джону Гуденафу[24], современные модели кажутся недостаточно хорошими (кстати, его фамилия по-английски пишется Goodenough и переводится как «достаточно хорошо»), и он работает над еще более надежным вариантом, отличительным свойством которого должен стать твердый стеклообразный электролит. Но не беспокойтесь, мы не должны бояться и ждать, когда на рынке появятся батарейки следующего поколения. Во взрывоопасной модели «Самсунга» был производственный дефект, который, надо надеяться, в ближайшем будущем не повторится. Однако, если представить себе, как взрывается огромная батарея «Теслы», мало не покажется…