Что тут интересно логически? Логически тут интересно то, что в видовом понятии мы имеем не просто замороженную и застывшую совокупность понятий, но эта совокупность непрерывно меняется, нарастает или убывает, и существует закон этого изменения, указывающий на критические переломы этого становления и тем создающий из него четкую структуру всех возможных его направлений. Таким образом, уже элементарное деление треугольника в геометрии не имеет ничего общего с той некритической чепухой, которая часто лежит в основе «деления» в логике.
Приведем пример сложнее. Вот у нас имеется понятие кривой второго порядка, или, что то же, понятие конического сечения. Имеется общее уравнение кривой второго порядка. Если мы возьмем дискриминант старших членов этого уравнения, то в зависимости от знака этого дискриминанта мы будем получать или гиперболу, или параболу, или эллипс. Когда этот дискриминант меньше нуля, мы имеем гиперболу. Когда он равен нулю, мы имеем параболу. Когда он больше нуля, получается эллипс (окружность является частным случаем эллипса). Здесь опять мы имеем видоразличие не как застывшую сумму признаков (а в традиционной логике мы часто не в силах перечислить даже эти застывшие признаки видовых понятий, как в приведенном выше примере с «европейцами»), но здесь мы получаем один вид из другого путем планомерного изменения этого последнего: в этом делении дан закон возникновения видов, а не просто эти виды в застывшем и абсолютно изолированном виде.
Возьмем деление движений в механике. Имеется общее уравнение динамики: сила равна произведению массы на ускорение. Беря различные силы, мы и получаем различные виды движения. Если к материальной точке приложена только одна упругая сила, то, подставляя ее в это уравнение и в дальнейшем интегрируя это последнее (т. е. переходя от ускорения данной точки к ее координатам как функциям времени, или, другими словами, к самому закону ее движения), мы увидим, что наша точка совершает т. н. гармоническое колебание. Если кроме упругой силы к данной точке приложена еще какая–нибудь сила сопротивления, напр. пропорциональная первой степени скорости, то — после тех же математических операций—мы увидим, что колебание движущейся точки окажется затухающим. Если материальная точка притягивается к какому–нибудь телу с силой, прямо пропорциональной массе и обратно пропорциональной квадрату расстояния до этого тела, то наша точка будет двигаться вокруг этого тела по одной из кривых второго порядка. И т. д. и т. д. Словом, сколько существует разных сил, столько же, вообще говоря, и видов движения. И этих сил, этих движений бесконечное множество. Правда, в данном примере мы имеем дело с дискретными силами и не ставим вопроса об их взаимном переходе, так что не возникает вопроса и о взаимопереходе движений. Но даже и при таком подходе мы здесь получаем все же замечательный образец деления, логическое совершенство которого несоизмеримо с логической слабостью традиционной теории. Ведь тут обычно все же есть некоторого рода закон для частного. Варьируя это общее—пусть даже дискретно, — мы получаем каждый раз оригинальные частности, не говоря уже о том, что само это варьирование есть совершенная логическая точность.
Изучение различных математических наук и приучение своего ума к такому более совершенному логическому оперированию с родом и видом неизбежно приводят и к категории интеграла как к одному из весьма совершенных и четких выражений общности вместо традиционного ящичного и внешне–механического объединения частностей в общем. Приведенные примеры из математики и механики показывают, что более тонкое и, можно сказать, животрепещущее понимание общего пронизывает даже элементарные отделы этих наук, не имеющих никакого отношения к понятию интеграла. Интеграл же только суммирует в себе ряд принципов, действующих то там, то здесь по всей математике. В прекрасной и совершенной логической форме интеграл дает нам такую общность, которая 1) возникает из частностей в условиях их сплошной текучести и взаимопроникновения и которая 2) есть предел их взаимослияния, служащий законом и принципом этого последнего. Эти моменты в логическом определении интеграла, взятые сами по себе, чрезвычайно просты и вполне очевидны: непрерывность, предел, закономерное появление частного из общего (когда общее рассматривается как функция вещи)—разве это может считаться для нас чем–то неожиданным и маловероятным? А ведь это и есть не что иное, как интеграл. Это и есть понятие как интеграл и мышление как сплошное дифференцирование и интегрирование.
12. ПРОИЗВОДНАЯ, ДИФФЕРЕНЦИАЛ И ИНТЕГРАЛ НА ФОНЕ ОБЩЕГО УЧЕНИЯ О ЧИСЛЕ