Выше мы уже натолкнулись на существенное логическое тождество дифференциала и интеграла. С известной точки зрения к этому тождеству присоединяется и производная. Указать существенное место для каждой такой категории—значит иметь ясное представление, что такое число вообще. Кроме того, здесь мы как раз встречаемся в лоб с тем приматом практики над теорией, который очень часто отодвигается на задний план именно в наиболее конкретных вопросах. Очень легко выставить этот примат как знамя, как ярлык, как принцип. Но чем конкретнее научная область, тем обыкновенно все меньше и меньше заговаривают об этом примате. Сейчас мы увидим, что наше исследование строится как раз обратно: чем конкретнее рассуждение о числе, тем ярче выступает у нас примат практики над теорией.
1. Но прежде всего отдадим себе отчет в том, что именно заставляет нас отождествлять дифференциал и интеграл.
Мы видели, что то и другое есть синтез конечного и бесконечного. Заметим к этому (хотя для нашего внимательного читателя это, собственно говоря, излишне), что мы вообще не мыслим ни конечного, ни бесконечного без их синтеза и тождества. Только абстрактная метафизика разрывает эти категории окончательно и гипостазирует, абсолютизирует каждое из них в отдельности и в отрыве одно от другого. Для нас все конечное, как бы оно мало ни было (пусть это будет мельчайший отрезок прямой), уже обязательно содержит в себе бесконечность (бесконечность еще меньших отрезков или точек); и мы не мыслим себе никакого бесконечного, которое бы не было>в то же самое время в некотором смысле конечным. Уже здесь становится заметным, что понимание этого неделимого синтеза и тождества то как конечного, то как бесконечного никак не может быть голой теорией (ибо теория тут одинаково говорит и за бесконечное, и за конечное), а является только практикой, решается практикой. Однако сейчас мы этого касаться не будем и только констатируем, что тождество конечного и бесконечного неизбежно и что, в частности, оно же лежит в основе и дифференциала, и интеграла, и производной. В анализе без него обойтись нельзя уже потому, что все эти три последние категории существенно связаны с пределом. Интеграл прямо есть предел и в качестве такового определяется даже в элементарных руководствах. Дифференциал же, правда, так не определяется, но это—только недоразумение. Ведь сами же руководства, определяя дифференциал, говорят нам: пусть мы имеем готовую, как бы то ни было полученную производную, и потом оказывается, что эта производная есть не что иное, как отношение дифференциалов функции и аргумента. Но тогда что же такое эти дифференциалы? Ведь то, что производная есть известного рода предел, этого–То математики уже во всяком случае не могут отрицать. А это значит, что и отношение данных дифференциалов есть предел, или, другими словами, что и каждый из них тоже в некотором смысле как–то связан с пределом. Ведь не могут же числитель и знаменатель дроби не иметь никакого отношения к тому частному, которое получается от деления числителя на знаменатель. Значит, дифференциал функции по меньшей мере связан с тем пределом, которым является производная этой функции. Пусть мы не будем говорить, как именно он связан, но самая связь эта, очевидно, отрицаться ни в каком случае не может.
Итак, категория дифференциала указывает на некоторого рода предельный переход. Предельный переход есть переход при помощи бесконечного становления. Следовательно, поскольку самый–то предел есть нечто конечное, необходимо с полной точностью утверждать, что он есть синтез конечного и бесконечного и что в этом пункте он совершенно неотличим от интеграла, который тоже есть некоторого рода предел.
Остается сюда же присоединить и саму производную, которая тоже есть некоторого рода предел. Значит, в смысле общего синтеза конечного и бесконечного производная, дифференциал и интеграл совершенно тождественны.
Это интересным образом запутывает все дело; и математики забавно барахтаются в этой логической путанице, несмотря на кристальную математическую ясность их построения. Можно, конечно, исключить момент предельности из дифференциала, пользуясь тем методом, когда говорят, что солнце нужно только ночью, так как днем же и без него видно. Правда, тогда дифференциал ничем не отличишь от бесконечно–малого просто. Но иные готовы и на это, только бы не понимать дифференциал вместе с пределом. Путаница эта забавная.