Читаем Хаос и структура полностью

5. Констатируя эту совершенно специфическую принципность интеграла, мы замечаем, что интеграл в сравнении с производной получает как бы второе измерение. Если признаки понятия рисовали нам понятие как бы с внешней стороны (они ведь, как мы знаем, и есть не что иное, как образ соотношения понятия с изменяющимися вещами) и если совокупность признаков понятия есть как бы его видимая сторона, поверхность, то само понятие лежит глубже этих признаков, оно — «подставка», «подпорка» для этих признаков, носитель этих признаков. И значит, если производная останавливает нас в области только самих же признаков, давая возможность путем предельных переходов распределять и осознать их бесконечные переливы, то интеграл погружает нас как бы вглубь от этой поверхности и прикрепляет систему признаков понятия к некоему определенному их носителю. Вот почему математики охотно понимают интеграл как площадь и объем, по крайней мере как длину кривой. Здесь бессознательно играет роль именно многомерность или по крайней мере двухмерность интеграла в сравнении с внешней «поверхностью» производной.

Если расширить и углубить это представление об интеграле, то мы и перейдем к определенному интегралу в собственном смысле слова, т. е. к интегралу как к пределу суммы, к интегралу как к площади.

6. Гораздо больше интереса представляет для нас другое определение интеграла — как предела суммы. Это т. н. определенный интеграл, т. е. интеграл, в котором определены и верхний, и нижний пределы и который поэтому есть функция своих обоих пределов. Посмотрим, что он дает для логики.

Определенный интеграл зародился в результате попыток определения площадей и объемов таких, которые ввиду своей сложности не поддавались методам элементарной арифметики и геометрии. Если мы имеем прямоугольник, то площадь его вычислить очень просто. Это — найти произведение основания прямоугольника на его высоту. Но если, напр., одну из сторон прямоугольника заменить кривой, то для определения площади такой фигуры метод умножения основания на высоту уже не годится. Здесь издавна, ёще с древнеегипетских времен, пытались свести такую фигуру на ряд таких прямоугольников, площадь которых уже не так трудно вычислить, и потом суммировали все такие прямоугольники. В наиболее совершенной форме этот метод проводится в интегральном исчислении.

Здесь берут такой «прямоугольник», верхняя сторона которого есть кривая линия и основание которого мыслится на оси х–ов, и разбивают его на прямоугольники путем перпендикуляров, восстанавливаемых к оси х–ов по мере движения х. Если мы будем количество таких прямоугольников беспредельно увеличивать и тем самым площадь каждого из них беспредельно уменьшать, т. е. если будет меняться непрерывно, то в определенных пределах изменения мы получим все увеличивающееся количество прямоугольников, которые в сумме будут стремиться к некоему пределу, что и есть площадь нашего «прямоугольника», или, как говорят, криволинейной трапеции. Геометрически, таким образом, интеграл есть площадь прямоугольника как предел суммы бесконечно возрастающего числа бесконечно умаляющихся элементарных прямоугольников, т. е. прямоугольников, возникающих при непрерывном возрастании X.

Это другое определение интеграла имеет очень важный логический смысл, если применить его к определению понятия.

Что могло бы значить понятие как предел суммы? Что это за предел и какая это сумма, чего, собственно, это сумма? Раз мы заговорили о сумме, значит, предполагаются слагаемые, части. Что же это за «части» в понятии? Конечно, это его виды, видовые понятия. Но тут не может быть перехода от родового понятия к видовому понятию, что мы находим в производной, которая ведь и есть метод получения частных понятий из общего. Тут не переход от рода к виду, но составление рода из видов. Переход здесь к виду делается только для того, чтобы полнее и расчлененнее представить самый род. Итак, родовое понятие, понятие как общее, есть сумма видовых понятий. Но это еще не интеграл.

Интеграл есть предел суммы. В таком случае, что же такое понятие как предел суммы его видов? О пределе мы имеем право говорить только тогда, когда имеется некая переменная величина, которая в результате своего увеличения или уменьшения может отличаться от другой, постоянной величины сколь угодно мало. В таком случае эта постоянная величина и есть предел данной переменной величины. Следовательно, для того, чтобы родовое понятие стало пределом для своих видов, необходимо, чтобы они, бесконечно мало отличаясь друг от друга, в сумме бесконечно мало отличались от этого родового понятия и в конце концов все расплывались бы в нем, образуя действительно целое и уже неделимое понятие.

Перейти на страницу:

Похожие книги