Читаем Хаос и структура полностью

Этот подбор из вещи разных ее материальных моментов, существенных для расчлененного понятия о ней, и есть не что иное, как совокупность признаков понятия. Но совокупность эта, как мы видим, дана тут не в чистом виде, не так, как она есть везде и всегда на этой кривой, но—только в связи именно с данной такой кривой. Эта совокупность признаков понятия нашей кривой прикована здесь к своим частным значениям, к своим временным и местным проявлениям и неотделима от них. Если вся кривая есть родовое понятие, то данное, определенное значение определяющей ее функции, т. е. ордината определенной точки на данной кривой, есть не что иное, как видовое понятие данной кривой. Поэтому и упомянутый выше закон не есть ни понятие кривой просто (ибо это есть, как мы знаем, тот самый род, который тут дробится по определенному закону, оставаясь бессменным решительно на всем протяжении кривой, т. е. сама функция), но и не то частное, видовое значение и проявление закона (ибо это есть данное значение функции, т. е. значение ее в данной точке). А это значит, что найденный нами тангенс является не чем иным, как математическим представлением логической природы только видового понятия, или частности, а не самого закона проявления этих видов. Это именно видовое понятие таково; оно не различает общего смысла вещи (безусловно в нем наличного) от данного вида вещи здесь и теперь. Полученный нами тангенс можно считать законом, по которому соотносятся нерасч–лененные понятия вещи с самой вещью. Но законом в определенном преломлении. Это закон данной специфической совокупности признаков родового понятия, ориентирующий это понятие на фоне становления вещи, отражением и функцией которого оно является. Этот закон дан здесь в своем частном проявлении, применительно к данному месту и времени.

Однако остается еще один шаг, и—категория логической производной получает последнюю математическую и логическую ясность и точность. Этот шаг ясен наперед: надо добиться общего выражения полученного нами закона. Надо отчленить общий закон от его частного проявления; и надо от видового понятия отделить самый закон его возникновения; надо получить видовое понятие как результат некоего принципа развертывания общего понятия, как становящееся основание для их появления. Если мы определяем жилище как приспособление для защиты от атмосферных явлений, то пусть мы уже не будем тут ставить вопросов: а какое это приспособление, большое или маленькое, вот это–то вот или вон то или — а какая это защита, хорошая или плохая, а какие это атмосферные явления, дождь, холод, зной, снег, град, гром и молния или еще что–нибудь. Нет, всё это—те или иные представления или виды жилища, более или менее общие, а не принцип деления понятия жилища. Нет, теперь уж пусть будет у нас приспособление вообще (неважно, какое именно в частности), защита вообще и атмосфера вообще. Но зато всю эту общность, взятую целиком, мы теперь преломляем сквозь призму какого–нибудь одного частного принципа. Мы берем, напр., время года и рассматриваем его как принцип развертывания родовой общности. Жилища, согласно этому принципу жилища, могут оказаться, напр., зимними и летними. Если такой принцип имеется, то, очевидно, он уже не будет просто тем или иным видовым понятием, но под него подойдет много отдельных видовых понятий. И если мы его формулируем отдельно, то этим мы отделим его и от каждого отдельного видового понятия, и от общего родового понятия. Этот принцип и направление возникновения видовых понятий на лоне общего родового понятия мы и называем логической производной данного родового понятия.

8. Здесь мы, наконец, можем внести во все наши рассуждения последнюю ясность—в целях получения категории производной функции, — привлекая одну простейшую и общеизвестную категорию из школьной логики.

Производная есть предел дробления родовой общности, или родового понятия, т. е. принцип этого дробления. То, что развертывается на лоне родового понятия, то, что непрерывно становится здесь, развертывается и становится по определенному принципу, дробится и делится по определенному принципу и основанию. Не встречаем ли мы здесь своего старого знакомого в школьной логике, знаменитое «основание деления», principium divisionis, без которого, как справедливо учит школьная логика, не может быть никакого планомерного деления рода на виды? Да, именно так. Производная от данного понятия и есть не что иное, как основание, или принцип, деления его на виды. Она есть не что иное, как ин–финитезимальный коррелят обычного формально–логического «основания деления».

Перейти на страницу:

Похожие книги