Читаем Хаос и структура полностью

Поскольку существенное отражение вещи сравнивается теперь с самой вещью как нечто целое, а самая вещь представляется непрерывно становящейся, то и дробление едино–цельного смысла вещи также становится обязательно непрерывным. Видовые различия, зарождающиеся на фоне рода, тоже должны зарождаться непрерывно, путем сдвигов, едва отличающихся от нуля, путем бесконечно–малых приращений. Вопреки мертвому механицизму обычной логики, оперирующей закостенелыми родами, видами и признаками, мы должны требовать, чтобы признаки понятия возникали путем бесконечно–малых нарастаний, чтобы и они вливались один в другой, непрерывно становились, непрерывно и сплош–но наполняли все понятие.

6. Разумеется, остановиться на этом нельзя. Одна чистая непрерывность была бы смертью для мышления и познания. Но как же тогда надо учить о видовых различиях понятия и, значит, о развитой совокупности понятия, чтобы не погибла его непрерывность и чтобы оно все же было раздельным в себе? Совершенно ясно, что для избежания полного растворения в этой непрерывности необходимо овладеть ее законом, так чтобы сразу получили и бесконечно–мало дробимый смысл, и в то же время общий закон этого дробления. А так как дробление это есть результат сопоставления смысла вещи как чего–то целого с самой вещью, то этот закон должен быть также и законом ориентации изучаемого нами смысла вещи, отраженного в мышлении, на фоне становления самой вещи.

Другими словами, в нашем видовом понятии дома, дерева, сада и т. д. мы должны теперь найти некую твердую и существенную структуру, которая бы уже не менялась при переходе от одного вида к другому и которая бы уже не была связана с внешними свойствами данного вида так слепо и неотчленимо. Эта–то структура и есть закон для всех этих соотношений смысла вещи с самой вещью, т. е. для всех возможных здесь видовых понятий и развитой совокупности признаков. Вещей—множество, и они непрерывно меняются; их свойства стихийно вливаются одно в другое до полной неразличимости. Но есть закон для этих непрерывных изменений вещи, который внедряется в поток непрерывности и делает его раздельным и устойчивым. Он так же необходим для мышления, как необходима и непрерывность, ибо одна чистая непрерывность будучи абсолютной неразличимостью, есть такая же гибель для мышления, как и чистая прерывность. Чистая прерывность убивает в мысли ее жизнь, а чистая непрерывность убивает в ней смысл.

Тут–то вот и залегают признаки понятия в их реальном научном употреблении, которые и есть не что иное, как само же понятие, но в его сопоставлении с вещью, т. е. представленное в дробном виде. И дробность эта, будучи результатом становления, уже не есть та дискретная дробность признаков, о которой учит школьная логика, но дробность существенно связанная с непрерывным становлением понятия. Она есть именно устойчивый закон этого становления, предел этого становления, направление этого становления, смысл этого становления. Печать этого закона становления лежит на всем становлении, на каждом мельчайшем его мгновении (ибо это последнее может быть определено и вычислено, если известен общий закон, или направление, данного становления), а на самом законе лежит печать этого становления (ибо закон этот, будучи предельным и нестановящимся, есть все же закон не чего иного, но именно становления). Так дробится единая и неделимая функция смысла вещи, отраженного в мышлении, на бесконечное количество непрерывно нарастающих функций смыслов; и так возникает закон, предел, направление этого непрерывного процесса нарастания смысла вещи в зависимости от непрерывного нарастания самой вещи.

7. Попробуем теперь провести аналогию с дифференциальным исчислением более точно. Вспомним элементарное геометрическое истолкование производной в анализе и сравним с этим то, что в логике называется определением понятия через совокупность признаков.

Пусть мы имеем прямоугольные оси координат, т. е. горизонтальную ось абсцисс, или ось jc–ob, и вертикальную ось ординат, или ось у–оъ. Пусть у есть какая–нибудь функция от х. Тогда эта функция геометрически изобразится в виде некоей кривой. Значит, если ось абсцисс есть линия изменения вещи, а ось ординат—линия изменения отражения или мышления, то полученная у нас кривая у=f(x) есть цельное и неделимое существенное отражение данной вещи в мышлении, некий законченный результат и образ этого отражения. Эта кривая есть цельный и существенный образ некоего материально независимого переменного; и она тут имеет значение как нечто едино–неделимое, как таковая.

Перейти на страницу:

Похожие книги