Читаем Как не ошибаться. Сила математического мышления полностью

Как оказалось, простые числа занимают промежуточное положение: они более распространены, чем степени числа 2, но встречаются реже, чем четные числа. Из первых N чисел N/log N чисел являются простыми. Эту теорему о распределении простых чисел доказали в конце XIX столетия специалисты по теории чисел Жак Адамар и Шарль Жан де ла Валле-Пуссен.

<p>Несколько слов о логарифме и флогарифме</p>

Я обратил внимание на такой факт: почти никто не знает, что такое логарифм. Позвольте мне исправить эту ситуацию. Логарифм положительного числа N, который обозначается как log N, – количество цифр, из которых состоит это число.

Погодите-ка, разве это действительно так? Это и есть логарифм?

Нет, на самом деле не совсем так. Мы можем назвать количество цифр в числе «фальшивым логарифмом», или флогарифмом. Флогарифм достаточно близок к реальному логарифму, чтобы дать общее представление о смысле логарифма в данном контексте. Флогарифм (а значит, и логарифм) – чрезвычайно медленно растущая функция: флогарифм тысячи равен 4, флогарифм миллиона (в тысячу раз большего числа) равен 7, а флогарифм миллиарда – всего 10[130].

<p id="lnk-826">Вернемся к кластерам простых чисел</p>

Теорема о распределении простых чисел гласит, что доля простых чисел среди первых N целых чисел составляет около 1/log N. В частности, простые числа встречаются все реже по мере увеличения чисел, хотя частота встречаемости простых чисел уменьшается очень медленно: случайное число из двадцати цифр может быть простым с вероятностью, в два раза меньшей, чем число из десяти цифр.

Вполне естественно предположить, что чем чаще встречаются числа определенного типа, тем меньше промежутки между такими числами. В случае четного числа вам не придется перемещаться вперед больше, чем на два числа, чтобы найти следующее четное число; на самом деле промежутки между четными числами всегда составляют ровно 2. В случае степеней числа 2 совсем другая история. Промежутки между двумя следующими друг за другом степенями числа 2 возрастают по экспоненциальному закону, неуклонно увеличиваясь все больше и больше, по мере того как вы проходите эту последовательность. Например, добравшись до степени 24 = 16, вы больше никогда не увидите две степени числа 2, расстояние между которыми составляет 15 или менее.

Это две простые задачи, а вот вопрос о промежутках между последовательными простыми числами более сложен. На самом деле этот вопрос настолько сложен, что даже после прорыва Чжана он во многих отношениях остается загадкой.

Тем не менее, на наш взгляд, мы знаем, чего ожидать, благодаря удивительно плодотворной точке зрения: давайте считать простые числа случайными величинами. Причина столь высокой плодотворности этой точки зрения состоит в том, что она в высшей степени ошибочна. Простые числа не являются случайными! В них нет ничего произвольного, и они не подвержены воле случая. Напротив, мы воспринимаем их как неотъемлемый элемент Вселенной; мы вырезаем их на золотых табличках и отправляем в межзвездное пространство, чтобы доказать представителям внеземных цивилизаций, что мы не дураки.

Простые числа не относятся к категории случайных величин, но они во многих отношениях ведут себя так, словно они случайные числа. Например, если разделить произвольное целое число на 3, в остатке с равной вероятностью будет либо 0, либо 1, либо 2. Если разделить большое простое число на 3, частное не может быть целым числом, поскольку в противном случае так называемое простое число можно было бы разделить на 3, а это значило бы, что оно вовсе не простое. Однако старая теорема Дирихле гласит, что остаток 1 имеет место с такой же вероятностью, что и остаток 2, – точно так же, как и в случае случайных чисел. Следовательно, с точки зрения «остатка от деления на 3» простые числа напоминают случайные числа, не считая того, что они не могут быть кратны 3.

А что насчет промежутков между последовательными простыми числами? Можно предположить, что, поскольку по мере увеличения чисел простые числа встречаются все реже, они становятся более отдаленными друг от друга. В целом это действительно так. Однако Чжан доказал, что существует бесконечное количество пар простых чисел, отличающихся друг от друга максимум на 70 миллионов. Другими словами, множество простых чисел, разница между которыми не превосходит 70 миллионов, бесконечно. В этом и состоит гипотеза об ограниченных промежутках между простыми числами.

Перейти на страницу:

Все книги серии Библиотека фонда «Эволюция»

Происхождение жизни. От туманности до клетки
Происхождение жизни. От туманности до клетки

Поражаясь красоте и многообразию окружающего мира, люди на протяжении веков гадали: как он появился? Каким образом сформировались планеты, на одной из которых зародилась жизнь? Почему земная жизнь основана на углероде и использует четыре типа звеньев в ДНК? Где во Вселенной стоит искать другие формы жизни, и чем они могут отличаться от нас? В этой книге собраны самые свежие ответы науки на эти вопросы. И хотя на переднем крае науки не всегда есть простые пути, автор честно постарался сделать все возможное, чтобы книга была понятна читателям, далеким от биологии. Он логично и четко формулирует свои идеи и с увлечением рассказывает о том, каким образом из космической пыли и метеоритов через горячие источники у подножия вулканов возникла живая клетка, чтобы заселить и преобразить всю планету.

Михаил Александрович Никитин

Научная литература
Ни кошелька, ни жизни. Нетрадиционная медицина под следствием
Ни кошелька, ни жизни. Нетрадиционная медицина под следствием

"Ни кошелька, ни жизни" Саймона Сингха и Эдзарда Эрнста – правдивый, непредвзятый и увлекательный рассказ о нетрадиционной медицине. Основная часть книги посвящена четырем самым популярным ее направлениям – акупунктуре, гомеопатии, хиропрактике и траволечению, а в приложении кратко обсуждаются еще свыше тридцати. Авторы с самого начала разъясняют, что представляет собой научный подход и как с его помощью определяют истину, а затем, опираясь на результаты многочисленных научных исследований, страница за страницей приподнимают завесу тайны, скрывающую неутешительную правду о нетрадиционной медицине. Они разбираются, какие из ее методов действенны и безвредны, а какие бесполезны и опасны. Анализируя, почему во всем мире так широко распространены методы лечения, не доказавшие своей эффективности, они отвечают не только на вездесущий вопрос "Кто виноват?", но и на важнейший вопрос "Что делать?".

Саймон Сингх , Эрдзард Эрнст

Домоводство / Научпоп / Документальное
Введение в поведение. История наук о том, что движет животными и как их правильно понимать
Введение в поведение. История наук о том, что движет животными и как их правильно понимать

На протяжении всей своей истории человек учился понимать других живых существ. А коль скоро они не могут поведать о себе на доступном нам языке, остается один ориентир – их поведение. Книга научного журналиста Бориса Жукова – своего рода карта дорог, которыми человечество пыталось прийти к пониманию этого феномена. Следуя исторической канве, автор рассматривает различные теоретические подходы к изучению поведения, сложные взаимоотношения разных научных направлений между собой и со смежными дисциплинами (физиологией, психологией, теорией эволюции и т. д.), связь представлений о поведении с общенаучными и общемировоззренческими установками той или иной эпохи.Развитие науки представлено не как простое накопление знаний, но как «драма идей», сложный и часто парадоксальный процесс, где конечные выводы порой противоречат исходным постулатам, а замечательные открытия становятся почвой для новых заблуждений.

Борис Борисович Жуков

Зоология / Научная литература

Похожие книги

12 недель в году
12 недель в году

Многие из нас четко знают, чего хотят. Это отражается в наших планах – как личных, так и планах компаний. Проблема чаще всего заключается не в планировании, а в исполнении запланированного. Для уменьшения разрыва между тем, что мы хотели бы делать, и тем, что мы делаем, авторы предлагают свою концепцию «года, состоящего из 12 недель».Люди и компании мыслят в рамках календарного года. Новый год – важная психологическая отметка, от которой мы привыкли отталкиваться, ставя себе новые цели. Но 12 месяцев – не самый эффективный горизонт планирования: нам кажется, что впереди много времени, и в результате мы откладываем действия на потом. Сохранить мотивацию и действовать решительнее можно, мысля в рамках 12-недельного цикла планирования. Эта система проверена спортсменами мирового уровня и многими компаниями. Она поможет тем, кто хочет быть эффективным во всем, что делает.На русском языке публикуется впервые.

Брайан Моран , Майкл Леннингтон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
100 способов уложить ребенка спать
100 способов уложить ребенка спать

Благодаря этой книге французские мамы и папы блестяще справляются с проблемой, которая волнует родителей во всем мире, – как без труда уложить ребенка 0–4 лет спать. В книге содержатся 100 простых и действенных советов, как раз и навсегда забыть о вечерних капризах, нежелании засыпать, ночных побудках, неспокойном сне, детских кошмарах и многом другом. Всемирно известный психолог, одна из основоположников французской системы воспитания Анн Бакюс считает, что проблемы гораздо проще предотвратить, чем сражаться с ними потом. Достаточно лишь с младенчества прививать малышу нужные привычки и внимательно относиться к тому, как по мере роста меняется характер его сна.

Анн Бакюс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Детская психология / Образование и наука