Читаем Как не ошибаться. Сила математического мышления полностью

Почему 70 миллионов? Потому, что это то, что Чжан смог доказать. В действительности публикация работы Чжана повлекла за собой взрыв активности: математики всего мира начали работать вместе в рамках проекта Polymath (своего рода онлайнового кибуца) над сужением промежутка, применяя для этого различные варианты метода Чжана. В июле 2013 года этой группе математиков удалось доказать, что существует бесконечно больше промежутков, не превышающих 5414. В ноябре Джеймс Мэйнард, только что получивший ученую степень в Монреале, сократил этот промежуток до 600, а участники проекта Polymath начали активно работать над объединением его идей с идеями группы. К тому моменту, когда вы будете читать данную книгу, этот промежуток, вне всяких сомнений, станет еще меньше[131].

На первый взгляд ограниченный промежуток между простыми числами может показаться чем-то удивительным. Если простые числа становятся все более отдаленными друг от друга, почему существует так много пар простых чисел, расположенных близко друг от друга? Может существует некая сила притяжения между простыми числами?

Ничего подобного. Если распределить простые числа в случайном порядке, велика вероятность, что некоторые пары чисел по воле случая окажутся рядом друг с другом – подобно тому, как точки, рассредоточенные на плоскости, образуют видимые скопления.

Нетрудно подсчитать, что, если простые числа вели бы себя подобно случайным числам, мы увидели бы именно такое поведение, какое продемонстрировал Чжан. Более того, можно было бы ожидать, что существует бесконечно большое количество пар простых чисел, отличающихся на 2, например таких пар, как 3 и 5 и 11 и 13. Это так называемые простые числа-близнецы, бесконечность количества которых остается гипотезой.

(Ниже приведены некоторые расчеты. Если они не представляют для вас интереса, можете пропустить их и перейти к абзацу, который начинается словами: Большое количество простых чисел-близнецов…)

Помните: теорема о распределении простых чисел гласит, что из первых N чисел N/log N чисел являются простыми. Если бы эти числа были распределены случайным образом, каждое число n могло бы быть простым с вероятностью 1/log N. Таким образом, вероятность того, что числа n и n + 2 оба являются простыми, равна (1/log N) × (1/log N) = (1/log N)². Так какого же количества пар простых чисел, отличающихся на 2, мы можем ожидать? В интересующей нас области существует N пар чисел (n, n + 2), причем каждое из них имеет вероятность быть простым числом-близнецом, равную (1/log N)², а значит, в данном интервале можно ожидать N/(log N)² простых чисел-близнецов.

Существуют некоторые отклонения от чистой случайности, с небольшим воздействием которых специалисты по теории чисел умеют обращаться. Главное то, что события «n – простое число» и «n + 2[132] – простое число» не являются независимыми: если n – простое число, это увеличивает вероятность того, что n + 2 – также простое число, а это означает, что мы не совсем правильно используем произведение (1/log N) × (1/log N). (Обратите внимание: если n – простое число, большее 2, оно нечетное, а это значит, что n + 2 также является нечетным, что повышает вероятность того, что n + 2 – простое число.) Годфри Гарольд Харди, который говорил о «ненужных затруднениях», а также Джон Инденсор Литлвуд, в соавторстве с которым он написал большую часть своих работ, разработали более точный метод прогнозирования с учетом этой зависимости, согласно которому количество простых чисел-близнецов в действительности должно быть на 32 % больше, чем N/(log N)². Такая более точная аппроксимация позволяет предсказать, что количество простых чисел-близнецов, не превышающих квадриллион, должно составлять около 1,1 триллиона – достаточно близкое совпадение с реальной цифрой 1 177 209 242 304. Это много простых чисел-близнецов.

Большое количество простых чисел-близнецов – это и есть то, что ожидают обнаружить специалисты по теории чисел, какими большими ни были бы эти числа, причем не потому, что мы считаем, будто в простых числах скрыта некая глубинная сверхъестественная структура, а именно потому, что мы так не считаем. Мы исходим из того, что простые числа распределены совершенно случайным образом. Если гипотеза о распределении простых чисел была бы ошибочной, именно это было бы настоящим чудом, подразумевающим, что некая до сих пор неведомая сила отталкивает простые числа друг от друга.

Перейти на страницу:

Все книги серии Библиотека фонда «Эволюция»

Происхождение жизни. От туманности до клетки
Происхождение жизни. От туманности до клетки

Поражаясь красоте и многообразию окружающего мира, люди на протяжении веков гадали: как он появился? Каким образом сформировались планеты, на одной из которых зародилась жизнь? Почему земная жизнь основана на углероде и использует четыре типа звеньев в ДНК? Где во Вселенной стоит искать другие формы жизни, и чем они могут отличаться от нас? В этой книге собраны самые свежие ответы науки на эти вопросы. И хотя на переднем крае науки не всегда есть простые пути, автор честно постарался сделать все возможное, чтобы книга была понятна читателям, далеким от биологии. Он логично и четко формулирует свои идеи и с увлечением рассказывает о том, каким образом из космической пыли и метеоритов через горячие источники у подножия вулканов возникла живая клетка, чтобы заселить и преобразить всю планету.

Михаил Александрович Никитин

Научная литература
Ни кошелька, ни жизни. Нетрадиционная медицина под следствием
Ни кошелька, ни жизни. Нетрадиционная медицина под следствием

"Ни кошелька, ни жизни" Саймона Сингха и Эдзарда Эрнста – правдивый, непредвзятый и увлекательный рассказ о нетрадиционной медицине. Основная часть книги посвящена четырем самым популярным ее направлениям – акупунктуре, гомеопатии, хиропрактике и траволечению, а в приложении кратко обсуждаются еще свыше тридцати. Авторы с самого начала разъясняют, что представляет собой научный подход и как с его помощью определяют истину, а затем, опираясь на результаты многочисленных научных исследований, страница за страницей приподнимают завесу тайны, скрывающую неутешительную правду о нетрадиционной медицине. Они разбираются, какие из ее методов действенны и безвредны, а какие бесполезны и опасны. Анализируя, почему во всем мире так широко распространены методы лечения, не доказавшие своей эффективности, они отвечают не только на вездесущий вопрос "Кто виноват?", но и на важнейший вопрос "Что делать?".

Саймон Сингх , Эрдзард Эрнст

Домоводство / Научпоп / Документальное
Введение в поведение. История наук о том, что движет животными и как их правильно понимать
Введение в поведение. История наук о том, что движет животными и как их правильно понимать

На протяжении всей своей истории человек учился понимать других живых существ. А коль скоро они не могут поведать о себе на доступном нам языке, остается один ориентир – их поведение. Книга научного журналиста Бориса Жукова – своего рода карта дорог, которыми человечество пыталось прийти к пониманию этого феномена. Следуя исторической канве, автор рассматривает различные теоретические подходы к изучению поведения, сложные взаимоотношения разных научных направлений между собой и со смежными дисциплинами (физиологией, психологией, теорией эволюции и т. д.), связь представлений о поведении с общенаучными и общемировоззренческими установками той или иной эпохи.Развитие науки представлено не как простое накопление знаний, но как «драма идей», сложный и часто парадоксальный процесс, где конечные выводы порой противоречат исходным постулатам, а замечательные открытия становятся почвой для новых заблуждений.

Борис Борисович Жуков

Зоология / Научная литература

Похожие книги

12 недель в году
12 недель в году

Многие из нас четко знают, чего хотят. Это отражается в наших планах – как личных, так и планах компаний. Проблема чаще всего заключается не в планировании, а в исполнении запланированного. Для уменьшения разрыва между тем, что мы хотели бы делать, и тем, что мы делаем, авторы предлагают свою концепцию «года, состоящего из 12 недель».Люди и компании мыслят в рамках календарного года. Новый год – важная психологическая отметка, от которой мы привыкли отталкиваться, ставя себе новые цели. Но 12 месяцев – не самый эффективный горизонт планирования: нам кажется, что впереди много времени, и в результате мы откладываем действия на потом. Сохранить мотивацию и действовать решительнее можно, мысля в рамках 12-недельного цикла планирования. Эта система проверена спортсменами мирового уровня и многими компаниями. Она поможет тем, кто хочет быть эффективным во всем, что делает.На русском языке публикуется впервые.

Брайан Моран , Майкл Леннингтон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
100 способов уложить ребенка спать
100 способов уложить ребенка спать

Благодаря этой книге французские мамы и папы блестяще справляются с проблемой, которая волнует родителей во всем мире, – как без труда уложить ребенка 0–4 лет спать. В книге содержатся 100 простых и действенных советов, как раз и навсегда забыть о вечерних капризах, нежелании засыпать, ночных побудках, неспокойном сне, детских кошмарах и многом другом. Всемирно известный психолог, одна из основоположников французской системы воспитания Анн Бакюс считает, что проблемы гораздо проще предотвратить, чем сражаться с ними потом. Достаточно лишь с младенчества прививать малышу нужные привычки и внимательно относиться к тому, как по мере роста меняется характер его сна.

Анн Бакюс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Детская психология / Образование и наука