В 1677 году, уже будучи в Ганновере, Лейбниц получил правильные формулы для вычисления дифференциала произведений, дробей и степеней. Эти формулы он вывел не без труда, путем проб и ошибок.
В 1680 году он практически завершил работу над своим методом анализа и, в отличие от Ньютона, который не горел желанием отдавать рукописи в печать, опубликовал первую статью по этой теме в 1684 году. Эта статья стала первой в истории публикацией, посвященной анализу бесконечно малых. Она имела внушительное заглавие «Новый метод максимумов и минимумов, а также касательных, для которого не являются препятствием ни дробные, ни иррациональные величины, и особый для этого род исчисления». В этой статье объемом всего в шесть страниц крайне схематично, без доказательств и практически без примеров было изложено дифференциальное исчисление Лейбница. Эта работа была сложной и непонятной, «скорее, загадка, нежели объяснение», как отзывались о ней братья Бернулли, которые первыми изучили математический анализ Лейбница. Сложность статьи усугублялась опечатками, допущенными при публикации.
Особого упоминания заслуживает один из немногих примеров, приведенных в статье, которому Лейбниц посвятил заключительные строки. Речь идет о задаче нахождения кривой по известной касательной, предложенной де Боном: «Я с удовольствием приведу в качестве приложения решение задачи, предложенной де Боном, которую безуспешно пытался решить Декарт. Найти линию такой природы, что проекция любой из ее точек на ось и точка пересечения касательной в этой точке с указанной осью образуют отрезок постоянной длины». Чтобы найти решение с помощью своего метода и тем самым доказать его возможности, Лейбницу понадобилось всего полдюжины строк. Искомой кривой в этой задаче является логарифмическая кривая.
Также следует обратить внимание, насколько своеобразным способом Лейбниц распространял информацию о своем дифференциальном исчислении. Он опубликовал свою работу в научном журнале Acta eruditorum, в создании которого участвовал в 1682 году, ознаменовав тем самым начало новой эпохи в науке.
Приведем вывод формулы производной произведения функций, изложенный Лейбницем, так как в нем ярко отражена недостаточная логическая строгость, которой отличался Лейбниц при работе с бесконечно малыми величинами: «
Как видите, четкость этого доказательства оставляет желать лучшего. В нем проявляется наиболее противоречивое свойство бесконечно малых величин: Лейбниц считает величину
Спустя два года, в 1686 году, Лейбниц публикует в Acta eruditorum свою вторую статью, которая на этот раз посвящена интегральному исчислению. Статья носила название «О скрытой геометрии и анализе неделимых и бесконечных величин». Лейбниц начал эту статью с оправданий, объясняя, почему его первая статья была столь сложной: «Понимая, что некоторые вещи, опубликованные мной в Acta об открытиях в геометрии, не были в достаточной мере поняты некоторыми учеными людьми и, более того, использованы не совсем верно, будь то по ошибке либо по какой-либо другой причине, я посчитал, что крайне ценно добавить к этой статье все возможное, чтобы прояснить прошлые вопросы».
В этой статье впервые используется обозначение интеграла, хотя из-за сложностей при печати знак ∫, примененный Лейбницем в рукописи, был заменен на