Необходимо учитывать, что математические обозначения имеют своим предметом
§ 2. Однородность, неподвижность и неизменность
Далее, математическая единица всегда однородна, где бы и как бы мы ею ни пользовались. Этого совершенно нельзя сказать ни об аффиксах, из которых складывается слово, ни о словоизменительных формативах, ни о словосочетаниях. Одна и та же приставка в зависимости от цельного слова приобретает всякий раз разное значение. И то же самое нужно сказать как о производящих основах слова и суффиксах, так и о морфологических показателях. Если взять, например, родительный падеж, то значений родительного падежа столько же, сколько и тех контекстов, в которых родительный падеж употребляется. Это доходит до того, что значения каждого падежа незаметно переливаются одно в другое точно так же, как и значения отдельных падежей могут как угодно близко подходить одно к другому[62]. В противоположность этому нельзя себе и представить, чтобы таблица умножения принимала разный вид в зависимости от того, сосчитываем ли мы столы, стулья, орехи и т.д. Даже отправившись на Луну или на Марс, мы все равно оставим нашу таблицу умножения в виде счета абсолютно однородных единиц.
В этом смысле каждая единица счета неподвижна и неизменна, а подвижность и изменчивость свойственны только той действительности, в области которой мы пользуемся таблицей умножения.
§ 3. Одноплановость, двухплановость и многоплановость
Наконец, знаки языка реально функционируют только в том единственном случае, если они что-нибудь обозначают. Поэтому всякий языковой элемент – всегда двухплановый или многоплановый. Этого совершенно нельзя сказать о математических обозначениях, из которых каждое всегда указывает только на какой-нибудь один предмет. И если можно говорить о двухплановости или многоплановости, то только в количественном смысле. Конечно, единица предполагает, что есть двойка, а двойка предполагает, что есть тройка. В этом смысле, математические обозначения тоже можно считать двухплановыми или многоплановыми. В этом же смысле математический язык тоже есть своеобразное орудие разумного жизненного общения. Но и двухплановость и общение здесь только чисто количественные. В то же самое время слово «
К этому нужно прибавить, что язык пользуется такими, напр., выражениями, как экспрессивные, или такими, напр., приемами, как ударение или интонация. Языковая интонация выражает собою и вопрошение и восклицание, и восторженность, и испуг, и иронию и вообще бесчисленное количество разных состояний сознания и разных отношений субъекта к объекту. В то же самое время математический знак совершенно лишен всех этих коммуникативных функций; и если он пользуется какой-нибудь коммуникацией, то опять-таки чисто количественной.
§ 4. Стихийное опровержение отвлеченного математизма в передовой советской лингвистике
Если мы будем прослеживать развитие советской лингвистики за последние десятилетия, то убедимся, что оно относится к языку и слову настолько цельно и полноценно, что о математических обозначениях, собственно говоря, никогда не поднимается и речи. Из огромной литературы приведем некоторые примеры.