В ядерной физике многие объекты исследования живут лишь очень короткое время. Нелегко точно определить значения масс таких короткоживущих частиц с помощью обычных масс-спектрометров. Вместо этого их массы определяются с помощью законов сохранения импульса и энергии, применяемых к процессам столкновений или превращений частиц, массы одной или более из которых нам уже известны. Уже при таких расчётах можно проверять законы сохранения, так как интересующая нас частица часто образуется в ходе нескольких различных реакций. Однако для того, чтобы непосредственно проверить равенство энергии, выделяющейся при превращениях, и энергии, вычисляемой по изменению величины массы покоя, лучше обратиться к миру ядерной физики. Там величина массы определяется непосредственно и с высокой степенью точности как для стабильных ядер, так и для некоторых нестабильных.
Возможности точного сравнения величины выделяющейся энергии и изменения массы наиболее благоприятны в случае лёгких ядер, так как при этом изменение массы в ходе рядовой ядерной реакции составляет более значительную часть полной массы и, следовательно, может быть более точно определено, чем в случае тяжёлых ядер. Мы рассмотрим поэтому реакцию между двумя самыми лёгкими атомными ядрами,— ту реакцию, которая к тому же имеет громадное значение в наш ядерный век:
Быстрый
дейтрон
+
Покоящийся
дейтрон
Протон
с очень
высокой
энергией
+
Ядро
трития с
высокой
энергией
Нейтрон
с очень
высокой
энергией
+
Ядро
гелия-3 с
высокой
энергией
или
H^2
(быстрый)
+
H^2
H^1
+
H^3
n
+
He^3
(93)
Обе альтернативные реакции, описываемые схемой (93), происходят со сравнимыми частотами при взрыве водородной бомбы (или «термоядерного оружия»). Они приводят к высвобождению значительной энергии, что характерно для устройств, использующих дейтерий («тяжёлый водород» H^2). Кинетическая энергия продуктов такой термоядерной реакции в сотни раз превышает кинетическую энергию первоначальных дейтронов.
Реакция, приводящая к возникновению ядра трития [первая из двух альтернативных реакций (93)], служит наиболее точным самостоятельным методом проверки законов сохранения, какой только возможно найти в физике вообще. Реализация этого метода возможна потому, что с помощью масс-спектрометра удаётся независимым образом точно определять массы покоя всех частиц, принимающих участие в этой реакции (дейтрона, протона и ядра трития).
Но массу покоя нейтрона невозможно определить независимым образом столь
же точно. Поэтому мы не концентрируем внимания на второй реакции
(93), приводящей к образованию нейтрона. Она непригодна для
проведения наиболее точных проверок эквивалентности массы и энергии.
Нейтрон — нестабильная частица (со средним временем жизни около
17
Допустим, что мы сосредоточили бы здесь своё внимание не на ядре трития, а на
нейтроне. На что могли бы мы надеяться, не располагая независимо
определённым