Однако при этом затруднительно измерять кинетическую энергию получающегося ядра трития, и эта энергия не измерялась. Но если неизвестна кинетическая энергия одного из продуктов реакции, то это значит, что не проводилось непосредственного измерения полного выхода кинетической энергии. Как же можно тогда сопоставить выход энергии при реакции с изменением масс покоя реагентов? Сводится ли на самом деле такое сравнение к какому-то непосредственному сопоставлению двух энергий? — Нет.
Можно составить ложное представление о происходящих явлениях, если думать, что они исчерпываются энергетическими переходами. При геодезической съёмке возможна столь же ошибочная концепция. Так, земельный план является многоугольником хитрой формы, наложенным на поверхность, которая не является плоской. Требуется найти длину прямолинейной границы A, а землемер измерил лишь разность координат по линии север — юг для A и B. Если его воображение неспособно на большее, то он встанет в тупик! Подобным же образом безнадёжно определять массу ядра трития из приведённых выше данных для дейтрон-дейтронной реакции, основываясь лишь на энергиях. Необходимо учесть также баланс импульсов.
Рис. 93. Определение массы ядра трития с помощью законов сохранения, рассматриваемое как геометрическая задача. Учтите: точки O, B, C лежат в плоскости чертежа; точка A лежит выше плоскости чертежа (y-компонента импульса).
(
m
)
^2
=
(
E
-компонента
AB
)
^2
-
(
p
-компонента
AB
)
^2
.
Энергетическая и импульсная компоненты стороны AB в этой формуле определяются по энергетическим и импульсным компонентам других трёх сторон многоугольника, т.е. по данным о других трёх частицах. Как найти значения E и p для одной из этих частиц, например для налетающего дейтрона? Ответ: с помощью процедуры, изображённой на рис. 94 и не похожей на обычно используемую при съёмках земельных планов! Предположим, что от землемера требовалось бы использовать метод, аналогичный применённому в опыте с реакцией H^2+H^2->H^1+H^3. Сделать это он мог бы, лишь воспользовавшись следующей необычной процедурой для нахождения компонент граничной прямой CB в направлениях север — юг и восток — запад (см. рис. 94, переводя его с языка физики частиц на язык геодезии!): 1) Измерение длины прямой CB. 2) и 3) Измерение компоненты этого отрезка в направлении север — юг. 4) Использование теоремы Пифагора для нахождения компоненты отрезка CB в направлении восток — запад.
Рис. 94. Экспериментальное определение энергии и импульса как компонент 4-вектора энергии-импульса в опыте по соударению дейтронов, H^2+H^2->H^1+H^3. (Обозначение концов вектора через B и C — использование тех же обозначений, что и на рис. 93).
Теперь мы разобрали, как определяются компоненты векторов энергии-импульса дейтрона-мишени (на рис. 93 отрезок OC), налетающего дейтрона (CB) и выбитого протона (OA). Компоненты неизвестной четвёртой стороны многоугольника (отрезок AB, соответствующий ядру трития) могут быть тогда найдены путём простого комбинирования трёх других известных 4-векторов — вычисления, начинающегося магической формулой «применим законы сохранения импульса и энергии»:
p
k
=
p
k
+
p
k
-
p
k
(k=x,y,z,t)
.
Индексом «нуль» обозначен первоначально покоившийся дейтрон. «Длина» искомой четвёртой стороны многоугольника сразу же даёт требуемую массу
(m)^2
=
(
p
t
)^2
-
(
p
x
)^2
-
(
p
y
)^2
-
(
p
z
)^2
.