Но это означает, что если какая-нибудь обратимая машина поглощает тепло
Но если это все, что есть в термодинамике, то почему же ее считают такой трудной наукой? А попробуйте описать поведение какого-нибудь вещества, если вам даже заранее известно, что масса вещества все время постоянна. В этом случае состояние вещества в любой момент времени определяется его температурой и объемом. Если известны температура и объем вещества, а также зависимость давления от объема и температуры, то можно узнать и внутреннюю энергию. Но кто-нибудь скажет: «А я хочу поступить иначе. Дайте мне температуру и давление и я скажу вам, каков объем. Я могу считать объем функцией температуры и давления и искать зависимость внутренней энергии именно от этих переменных». Трудности термодинамики связаны именно с тем, что каждый может подойти к задаче с того конца, с какого вздумает. Нужно только сесть и выбрать определенные переменные, а потом уж твердо стоять на своем, и все станет легко и просто.
Сейчас приступим к выводам. В механике мы подошли ко всем нужным нам результатам, исходя из центра механического мира F=ma. Такую же роль в термодинамике сыграет только что найденный нами принцип. Но какие выводы можно сделать, исходя из этого принципа?
Ну начнем. Сначала скомбинируем закон сохранения энергии и закон, связывающий
Q2=(T2/T1)Q1. Поэтому работа равна
W=Q1(l-T2/T1) =Q1(T1-T2)/T1. (44.13)
Это соотношение характеризует эффективность машины, т. е. количество работы, произведенное при заданной затрате тепла. Коэффициент полезного действия пропорционален перепаду температур, при котором работает машина, деленному на более высокую температуру:
К.п.д. =W/Q1=(T1-T2)/T1. (44.14)
Коэффициент полезного действия не может быть больше единицы, а абсолютная температура не может быть меньше нуля, абсолютного нуля. Таким образом, раз
§ 6. Энтропия
Уравнение (44.7) или (44.12) может быть истолковано особо. При работе обратимых машин
Интересно, что, кроме давления, которое зависит от температуры и объема, и внутренней энергии (функции все тех же объема и температуры), мы нашли еще величину — энтропию вещества, которая тоже является функцией состояния. Постараемся объяснить, как вычислять энтропию и что мы понимаем под словами «функция состояния». Проследим за поведением системы в разных условиях. Мы уже умеем создавать разные условия экспериментально, например можно заставить систему расширяться адиабатически или изотермически. (Между прочим, машина не обязательно должна иметь только два резервуара, может быть и три, и четыре различные температуры, и машина будет обмениваться теплом с каждым из резервуаров.) Мы можем прогуляться по всей диаграмме