Читаем Feynmann 4 полностью

Инженеры-электрики объясняют все это иначе. Физичес­ки источником шумов служит сопротивление. Однако можно заменить реальную цепь с честным сопротивлением, вызываю­щим шумы, фиктивной цепью, содержащей маленький генератор, который якобы порождает шумы, а сопротивление теперь будет идеальным — оно уже не шумит. Все шумы теперь исходят от фиктивного генератора. Итак, если нам известны харак­теристики шума, порождаемого сопротивлением, и у нас для этого имеется подходящая формула, то можно рассчитать, как цепь реагирует на этот шум. Следовательно, нам нужна формула для шумовых флуктуации. Сопротивление одинаково хорошо порождает шумы всех частот, поскольку оно само от­нюдь не резонатор. Резонансная цепь, конечно, «слышит» лишь часть этого шума вблизи определенной частоты, а в соп­ротивлении заключено много и других частот. Силу генера­тора можно описать таким образом: выделяемая на сопро­тивлении средняя мощность, если оно непосредственно сое­динено с генератором шума, равна 2>/R, где Е — снимаемое с генератора напряжение. Но теперь мы хотим знать подроб­нее о распределении мощности по частотам. Каждой определен­ной частоте соответствует очень малая мощность. Пусть P(w)dw — мощность, которую генератор посылает сопротивле­нию в интервале частот dw. Тогда можно доказать (мы дока­жем это для другого случая, но математика и там и тут оди­накова), что выделяемая мощность равна

P(w)dw=2/pkTdw (41.3) я, таким образом, не зависит от сопротивления.

§ 2. Тепловое равновесие излучения

Мы приступаем к обсуждению более сложной и интересной теоремы, суть которой состоит в следующем. Предположим, что у нас имеется заряженный осциллятор, вроде того, о котором мы говорили, когда речь шла о свете. Пусть это будет электрон, колеблющийся в атоме вверх и вниз. А раз он колеблется, то излучает свет. Предположим теперь, что этот осциллятор попал в сильно разреженный газ, состоящий из других атомов, и время от времени эти атомы с ним сталкиваются. Когда в конце концов наступит равновесие, осциллятор приобретает такую энергию, что кинетическая энергия колебаний будет равна l/2kT, а поскольку это гармонический осциллятор, то полная энергия движения станет равной kT.

Это, конечно, неверно, потому что осциллятор несет электри­ческий заряд, а поскольку он обладает энергией kТ, то, качаясь вверх и вниз, он излучает свет. Поэтому невозможно получить равновесие только самого вещества без того, чтобы заряды не излучали свет, а когда свет излучается, утекает энергия, ос­циллятор со временем растрачивает энергию kT, а окружающий газ, сталкивающийся с осциллятором, постепенно остывает. Именно таким образом остывает за ночь натопленная с вечера печка, выпуская все тепло на воздух. Прыгающие в ее кирпи­чах атомы заряжены и непрерывно излучают, а в результате этого излучения танец атомов постепенно замедляется.

Но если заключить все атомы и осцилляторы в ящик, так чтобы свет не смог уйти в бесконечность, тепловое равновесие может наступить. Мы можем поместить газ в ящик, в стен­ках которого есть и другие излучатели, испускающие свет внутрь ящика, а еще лучше соорудить ящик с зеркальными стен­ками. Этот пример поможет лучше понять, что произойдет. Итак, мы предполагаем, что все излучение от осциллятора ос­тается внутри ящика. Осциллятор и в этом случае начинает излучать, но довольно скоро он все же соберет свое значение kT кинетической энергии. Происходит это потому, что сам ос­циллятор будет освещаться, так сказать, собственным светом, отраженным от стенок ящика. Вскоре в ящике будет много света и, хотя осциллятор продолжает излучать, часть света будет возвращаться и возмещать осциллятору потерянную им энергию.

А теперь подсчитаем, насколько должен быть освещен ящик при температуре Т, чтобы рассеяние света на осцилляторе обес­печивало его как раз такой энергией, какая нужна для под­держания излучения. Пусть атомов в ящике совсем немного и находятся они далеко друг от друга, так что наш осциллятор идеальный, не имеющий иного трения, кроме радиационного. Теперь заметим, что при тепловом равновесии осциллятор делает сразу два дела. Во-первых, он излучает, и мы можем подсчитать энергию излучения. Во-вторых, он в возмещение получает точно такое же количество энергии в результате рассеяния на нем света. Поскольку энергия ниоткуда больше притечь не может, то эффективное излучение — это как раз та часть «общего света», которая рассеялась на осцилляторе.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука