Читаем Feynmann 1 полностью

причем каждый последующий момент ti+1 находится по пра­вилу ti+1=ti+Dt. Но расстояние, полученное этим методом, не будет точным, поскольку скорость за время Dt все же изменяет­ся. Выход из этого положения заключается в том, чтобы брать все меньшие и меньшие интервалы Dt, т. е. разбивать время дви­жения на все большее число все меньших отрезков. В конце концов мы придем к следующему, теперь уже точному выра­жению для пройденного пути:

(8.7)

Математики придумали для этого предела, как и для диф­ференциала, специальный символ. Значок D превращается в d, напоминая о том, что интервал времени сколь угодно мал, а знак суммирования превращается в ∫ — искаженное большое S, первая буква латинского слова «Summa». Этот значок назван интегралом. Таким образом, мы пишем

s=∫v(t)dt, (8.8)

где v(t) скорость в момент t. Сама же операция суммирования этих членов называется интегрированием. Она противополож­на операции дифференцирования в том смысле, что производная этого интеграла равна v(t), так что один оператор (d/dt) «уничто­жает» другой (∫). Это дает возможность получать фор­мулы для интегралов путем обращения формул для дифферен­циалов: интеграл от функции, стоящей в правой колонке табл.8.3, будет равен функции, стоящей в левой колонке. Диф­ференцируя все виды функций, вы сами можете составить таблицу интегралов.

Любая функция, заданная в аналитическом виде, т. е. вы­ражающаяся через комбинацию известных нам функций, диф­ференцируется очень просто — вся операция выполняется чис­то алгебраически, и в результате мы всегда получаем какую-то известную функцию. Однако интеграл не от всякой функции можно записать в аналитическом виде. Разумеется, для каж­дого частного интеграла всегда сначала пытаются найти такую функцию, которая, будучи продифференцирована, давала бы функцию, стоящую после знака интеграла (она называется подынтегральной). Однако это не всегда удается сделать. В та­ких случаях интеграл вычисляют просто суммированием, т. е. вычисляют суммы типа (8.6) со все меньшими и меньшими ин­тервалами, пока не получат результат с достаточной точностью.

§ 5. Ускорение

Следующий шаг на пути к уравнениям движения — это вве­дение величины, которая связана с изменением скорости дви­жения. Естественно спросить: а как изменяется скорость дви­жения? В предыдущих главах мы рассматривали случай, когда действующая сила приводила к изменению скорости. Бывают легковые машины, которые набирают с места за 10 сек скорость 90 км/час. Зная это, мы можем определить, как изменяется скорость, но только в среднем. Займемся следующим более сложным вопросом: как узнать быстроту изменения скорости. Другими словами, на сколько метров в секунду изменяется скорость за 1 сек. Мы уже установили, что скорость падающего тела изменяется со временем по формуле v=9,8t (см. табл. 8.4), а теперь хотим выяснить, насколько она изменяется за 1 сек. Эта величина называется ускорением.

Таким образом, ускорение определяется как быстрота изме­нения скорости. Всем сказанным ранее мы уже достаточно под­готовлены к тому, чтобы сразу записать ускорение в виде производной от скорости, точно так же как скорость записы­вается в виде производной от расстояния. Если теперь продиф­ференцировать формулу v=9,8 t, то получим ускорение падаю­щего тела

a=dv/dt=9,8. (8.9)

(При дифференцировании этого выражения использовался ре­зультат, полученный нами раньше. Мы видели, что производная от Bt равна просто В (постоянной). Если же выбрать эту по­стоянную равной 9,8, то сразу находим, что производная от 9,8 t равна 9,8.) Это означает, что скорость падающего тела по­стоянно возрастает на 9,8 м/сек за каждую секунду. Этот же результат можно получить и из табл. 8.4. Как видите, в случае падающего тела все получается довольно просто, но ускорение, вообще говоря, непостоянно. Оно получилось постоянным толь­ко потому, что постоянна сила, действующая на падающее тело, а по закону Ньютона ускорение должно быть пропорциональ­но силе.

В качестве следующего примера найдем ускорение в той задаче, с которой мы уже имели дело при изучении скорости:

s=At3+Bt+C.

Для скорости vds/dt мы получили формулу

v=3At2+B.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука