Читаем Евклидово окно. История геометрии от параллельных прямых до гиперпространства полностью

Некоторые возражения доказательствам Евклида смотрятся как придирки, однако невинные очевидные допущения без всяких видимых последствий могут иногда равняться серьезным теоретическим утверждениям. К примеру, допущение существования всего одного треугольника, чья сумма углов равна 180°, позволяет доказать, что у всех треугольников сумма углов составляет 180°, а также позволяет доказать постулат параллельности.

В 1871 году прусский математик Феликс Клейн [Кляйн] показал, как устранить очевидное противоречие в сферической модели эллиптического пространства Римана, усовершенствовав попутно и Евклида [178] . Вскоре после этого математики вроде Бельтрами и Пуанкаре предложили свои новые модели и подходы к геометрии. В 1894 году итальянский логик Джузеппе Пеано выдвинул новый набор аксиом для определения евклидовой геометрии [179] . В 1899 году Гильберт, не знакомый с работами Пеано, выдал свою версию формулировки геометрии – в наиболее распространенном ныне виде [180] .

Гильберт полностью посвятил себя прояснению фундаментальных основ геометрии (а впоследствии помог развить общую теорию относительности Эйнштейна). Он многократно пересматривал свои формулировки – до самой смерти в 1943 году. Первый шаг его метода – превращение неявных допущений Евклида в развернутые утверждения. В свою систему Гильберт – по крайней мере в седьмом издании своего труда в 1930 году, – включил восемь не определенных понятий и увеличил число аксиом Евклида с десяти (включая общие утверждения) до двадцати [181] . Аксиомы Гильберта разделили на четыре группы. Они включают в себя не опознанные Евклидом допущения вроде тех, что мы уже рассмотрели:

...

Аксиома I-3: Каждой прямой a принадлежат по крайней мере две точки. Существуют по крайней мере три точки, не принадлежащие одной прямой.

Аксиома II-3: Среди любых трех точек, лежащих на одной прямой, существует не более одной точки, лежащей между двумя другими.

Гильберт и другие ученые доказали, что все свойства евклидова пространства можно вывести из этих аксиом.

* * *

Революция искривленного пространства глубоко повлияла на все области математики. Примерно со времен Евклида и до работ Гаусса и Римана, обнаруженных посмертно, математика была по большей части дисциплиной прагматической. Евклидова структура воспринималась как описание физического пространства. Математика в некотором смысле была разновидностью физики. Вопросы непротиворечивости математических теорий казались порожними – доказательства следовало искать в физическом мире. Но к 1900 году математики осознали, что аксиомы – спорные утверждения, они суть всего лишь основа системы, следствия которой необходимо изучать в некоем подобии умозрительной игры. Внезапно математические пространства превратились в абстрактные логические конструкты. Природа физического пространства стала самостоятельным предметом, вопросом физики, а не математики.

Перед математиками встал вопрос совсем нового свойства: доказательство логической непротиворечивости их построений. Понятие доказательства, переместившееся за последние века развития расчетных методик на заднее сиденье, вновь стало главенствующим. Состоятельна ли геометрия Евклида? Самый лобовой способ доказать непротиворечивость логической системы – доказать все мыслимые теоремы и продемонстрировать, что ни одна не противоречит другой. Поскольку существует бесконечное количество возможных теорем, такой подход годится лишь тем, кто планирует жить вечно. Гильберт опробовал иную тактику. Как и Декарт с Риманом, Гильберт определили точки в пространстве через числа. В случае с двухмерным пространством, например, каждая точка соответствует паре действительных чисел. Превратив точки в числа, Гильберт смог перевести все фундаментальные геометрические понятия и аксиомы в арифметические. Так доказательство любой геометрической теоремы переводится на язык арифметических или алгебраических действий с координатами. А поскольку любое геометрическое доказательство следует логически из аксиом, арифметическая интерпретация должна вытекать из аксиом, облеченных в арифметическую форму. Если в геометрии возникает противоречие, оно проявится и при переводе на язык арифметики, а если арифметика непротиворечива, стало быть, стройны и гильбертовы формулировки евклидовой геометрии (для неевклидовых геометрий эти действия тоже были позднее проделаны). Яснее некуда? Хотя в итоге Гильберту и не удалось доказать абсолютную непротиворечивость геометрии, доказать относительную непротиворечивость он все-таки смог.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное