Читаем Евклидово окно. История геометрии от параллельных прямых до гиперпространства полностью

Теорема Пифагора в данном случае говорит нам, что сумма квадратов горизонтальной и вертикальной сторон, х 2 + у 2, есть квадрат длины гипотенузы. Если принять определение, что расстояние между двумя точками А и В есть длина линии, соединяющей их, то мы только что установили, что квадрат расстояния между А и В есть х 2 + у 2. А теперь представим любые две точки А и В на плоскости. Мы вполне можем изобразить оси х и у так, чтобы получилась та же ситуация, которую мы только что рассмотрели: А размещается на горизонтальной оси, а В – на вертикальной. Это означает, что квадрат расстояния [122] между любыми двумя точками А и В есть попросту сумма квадратов разниц между их соответствующими координатами.

* * *

Декартова формула для определения расстояния [123] имеет глубокие связи с евклидовой геометрией, и нам еще предстоит в этом убедиться. Но его представление о расстояниях как о функции разниц координат и в общем случае состоятельно; именно оно позднее стало ключевым для понимания природы и евклидовой, и неевклидовой геометрий.

Декарт применил свои прозрения в геометрии ко многим своим знаменитым трудам в физике. Он первым сформулировал закон рефракции света в его современном тригонометрическом виде; ему же принадлежит первое исчерпывающее объяснение физики радуги. Его геометрические методы оказались настолько всеобъемлющими для всех его представлений, что он сам писал: «Вся моя физика есть не что иное как геометрия» [124] . И тем не менее Декарт откладывал издание своих трудов по геометрии координат целых девятнадцать лет, да и вообще ничего не публиковал до своих сорока. Чего он боялся? Да как обычно – Католической церкви.

По многократному настоянию друзей Декарт уже готов был обнародовать свои работы несколькими годами ранее – в 1633-м. И тут этот итальянец по имени Галилей издал труд под названием «Диалог о двух главнейших системах мира» [125] . Симпатичная такая пьеска – трое болтунов разговаривают об астрономии. Явно внебродвейское нечто. Но почему-то отцы Церкви решили разобраться, что к чему, и как-то не впечатлились. Быть может, сочли, что актер, представлявший их птолемеевские воззрения, получил слишком мало реплик. К сожалению, в те дни, если Церковь бралась рецензировать книгу, она рецензировала и автора, а результатом такой рецензии – и для книги, и для автора – мог стать костер. В случае с Галилеем сожгли книгу, а самому Галилею пришлось от нее отречься и – ах да! – от Инквизиции ему еще и достался тюремный срок без возможности откинуться. Декарт фанатом Галилея не был. Он даже написал свою рецензию на книгу итальянца: «Сдается мне, ему [Галилею] не достает вот чего: он постоянно отвлекается и все никак не раскроет во всей полноте ту или иную тему, а это говорит о том, что он в ней не разобрался по порядку…» [126] И все же он разделял гелиоцентрические представления Галилея, а также и другие разумные соображения, и потому принял тяжкую участь Галилео близко к сердцу. Хоть он и жил в протестантской стране, издание своей книги все равно отменил [127] .

Но все-таки Декарт наконец собрался с духом и в 1637 году обнародовал первую работу, позаботившись о том, чтобы его труд никоим образом не задевал Церковь. К сорока годам Декарту было что сказать далеко не только о геометрии, и он объединил все накопившееся одном томе. Под предисловие потребовалось 78 страниц. Оригинальная рукопись носила не слишком хлесткое название: «Рассужденье о вселенской науке, что могла бы возвысить нашу природу до величайших вершин совершенства; далее о диоптрике, о метеорах и геометрии, где любопытнейшие соображения, какие автор смог добыть, дабы доказать вселенскую науку, кою он предлагает, объясняются таким манером, что даже и те, кто никогда не учился, смогут их постичь» [128] . При издании название слегка подсократили – видимо, сотрудники той службы, что в XVII веке выполняла функции отдела издательского маркетинга. И все равно получилось длинновато. Время обточило название до совсем краткого, и ныне эту работу Декарта обычно именуют «Рассуждением» или «Рассуждением о методе».

«Рассуждение о методе» – протяженный трактат, описывающий философию Декарта и его рациональный подход к решению научных задач. «Геометрия», третье приложение, была призвана показать результаты, каких удалось добиться методами, предложенными Декартом. Свое имя он с титульного листа убрал – и не потому, что название заняло всю страницу, а из-за неизбывной боязни преследования. К сожалению, его друг Марен Мерсенн написал вступление и в нем не оставил никаких сомнений в личности автора книги.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное