Читаем Евклидово окно. История геометрии от параллельных прямых до гиперпространства полностью

Декарт не просто унаследовал всю алгебру, потребную для его работы. Он сам изобрел значительную ее часть. Во-первых, он предложил современный вид записи с применением последних букв алфавита для обозначения неизвестных переменных и первых – для обозначения постоянных. До Декарта язык алгебры не блистал изяществом. К примеру, Декарт записал бы 2 x 2 + x 3, а до него то же выражалось так: «2 Q плюс C », где через Q обозначали квадрат ( carre 2), а через С – куб. Запись Декарта совершеннее, потому что она исчерпывающе фиксирует и неизвестное число, возводимое в квадрат и в куб ( х ), и характер степеней х (2 и 3). Применив это более изящное написание, Декарт смог складывать и вычитать уравнения и производить с ними другие арифметические операции. Он смог классифицировать алгебраические выражения согласно типу кривой, которую они представляли. Например, он опознал уравнения 3 х + 6 y – 4 = 0 и 4 х + 7 у + 1 = 0 как представляющие прямые, которые он изучил в общем случае ax + by + c = 0. Таким образом, он преобразовал алгебру из науки, изучающей мешанину отдельных уравнений, в дисциплину оформленных классов уравнений, см.: Vrooman, стр. 117–118. Более общую историю алгебраических символов см.: Kline, Mathematical Thought , стр. 259–263, и Resnikoff and Wells, стр. 203–206.

121

По таблице, приведенной в «Нью-Йорк Таймс» 11 января 1981 г. и процитированной у Тафта.

122

Теперь нам становится понятнее декартово определение окружности. Если окружность имеет центр в точке начала координат, и координаты точки на окружности – х и у , тогда требование, чтобы х и у отвечали уравнению х 2 + у 2 = r 2, попросту означает, что все точки на окружности должны находиться на расстоянии r от центра; это простое интуитивное определение, знакомое нам со школы.

123

Хоть мы и объяснили это для плоскости, двухмерного пространства, декартовы координаты просто будет распространить на три и более измерения. К примеру, уравнение сферы х 2 + у 2 + z 2 = r 2, изменение состоит лишь в дополнительной координате z. Таким образом, физические теории могут быть описаны с помощью произвольного числа пространственных измерений. Выясняется, что обычная квантовая механика принимает чрезвычайно простой вид при бесконечном числе пространственных измерений, и это свойство применяется для нахождения приблизительных ответов для уравнений, решение которых иначе затруднительно. Интересующимся математикой рекомендуем: L. D. Mlodinow and N. Papanicolaou, «SO(2,1) Algebra and Large N Expansions in Quantum Mechanics», Annals of Physics, том 28, № 2 (сентябрь, 1980), стр. 314–334.

124

Vrooman, стр. 120.

125

На рус. яз.: М., СПб: ОГИЗ Москва – Ленинград, 1948, пер. А. И. Долгова. – Прим. пер.

126

Vrooman, стр. 115.

127

Vrooman, стр. 84–85.

128

Vrooman, стр. 89.

129

Vrooman, стр.152–155, 157–162.

130

Vrooman, стр. 136–149.

131

Об отношениях Декарта и Кристины см.: Vrooman, стр. 212–255.

132

О странствиях разных частей тела Декарта после смерти см. там же, стр. 252–254.

133

Heath, стр. 364–365.

134

О споре Прокла с Птолемеем см.: Kline, Mathematical Thought , стр. 863–865.

135

Джон Плейфэр (1748–1819) – шотландский математик и географ, профессор математики в Эдинбургском университете. – Прим. пер.

136

Средневековая исламская цивилизация внесла огромный вклад в развитие всей математики, не только сохранив работы греков, но и развив алгебру. Подробности см.: J. L. Berggren, Episodes in the Mathematics of Medieval Islam (New York: Springer-Verlag, 1986); коротко о жизни Сабита ибн Курра см. там же, стр. 2–4. Его попытка доказать постулат параллельности описана у Грея, стр. 43–44. Попытки других исламских математиков также приводятся у Грея.

137

Сэр Генри Сэвил (1549–1622, в русскоязычной традиции – Савиль) – английский математик, учредил в Оксфорде в 1619 г. на собственные деньги две профессорские ставки – по геометрии и астрономии; эти две кафедры под именем «савилианских» получили большую известность. – Прим. пер.

138

Имеется в виду торговая марка автомобилей класса «люкс» «ниссан-инфинити», принадлежащая японской компании «Ниссан Моторз». – Прим. пер.

139

Подробнее см. у Грея, стр. 57–58.

140

Подробное жизнеописание Гаусса см. в: G. Waldo Dunnigton, Carl Friedrich Gauss: Titan of Science (New York: Hafner Publishing Co., 1955).

141

Muir, стр. 179.

142

Muir, стр. 181.

143

Muir, стр. 182.

144

Muir, стр. 179.

145

Muir, стр. 161.

146

Hollingdale, стр. 317.

147

Hollingdale, стр. 65.

148

Muir, стр. 179.

149

Dunnington, стр. 24.

150

Dunnington, стр. 181.

151

Russell, стр. 548.

152

Kline, Mathematical Thought , стр. 871.

153

Russell, Introduction to Mathematical Philosophy (New York: Dover Publications, 1993), стр. 144–145.

154

Dunnington, стр. 215.

155

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное