Его подвиг в первой половине XIX века был символом власти математики, ведь именно в это время происходил расцвет науки. Хотя астрономы открыли планету случайно, математик использовал свои аналитические способности для объяснения того, что произойдет в будущем. Благодаря расчету орбиты Цереры к концу первого года нового века Гаусс был не только одним из самых известных математиков, но и самым популярным астрономом в Европе.
В марте 1802 года Ольберс открыл еще один астрономический объект — Палладу, которая имеет меньший размер, чем Церера, и предложил Гауссу описать ее орбиту, пока тот в течение трех недель находился в Бремене по приглашению самого Ольберса. Метод наименьших квадратов снова подтвердил свою силу, и Ольберс своими глазами увидел мощь примененных Гауссом математических техник. А когда возникли споры о первенстве открытия метода наименьших квадратов, Гаусс призвал Ольберса в качестве свидетеля того, что этот метод применялся уже в начале века.
В ноябре того же года молодой Гаусс, которому было всего 25 лет, был объявлен членом Королевского научного общества в Гёттингене. Успех принес ученому много почестей, среди них было и приглашение стать руководителем астрономической обсерватории в Петербургской академии наук. В России существовала давняя традиция приглашать в свои научные институты иностранных ученых, как в случае с Леонардом Эйлером. В 1802 году, когда Гаусс еще только обдумывал это приглашение, Ольберс предупредил об этом своего друга, фон Геерена, преподавателя Гёттингенского университета и советника правительства Ганновера. Ольберс не хотел, чтобы Гаусс уезжал из Германии, и использовал свои связи для того, чтобы ученому предложили руководство новой Гёттингенской обсерваторией, строительство которой еще даже не началось. Серьезные переговоры о переезде Гаусса в Гёттинген начались только в 1804 году и успешно завершились в 1807-м.
Задача, предложенная Гауссу, касалась вычисления траекторий планет на основе минимального количества наблюдений (по крайней мере, трех). Математически она была чрезвычайно сложной, поскольку нужно было решить шесть уравнений с шестью неизвестными. При этом вычислить точные решения было невозможно и нужно было найти приближенные. Да, решение линейной системы какой-либо задачи, в которой столько же неизвестных, сколько и уравнений, может быть довольно трудоемким, но не предполагает технических сложностей. Однако в этом случае система уравнений была нелинейной. Вычисление орбиты Цереры, как и почти все вычисления Гаусса, включало в себя искусное использование последовательных приближений. Следует отметить прагматизм ученого, который использовал любой доступный математический инструмент. При этом он ввел множество идей, полное доказательство которых далеко не тривиально.