«Этой зимой я читаю два курса лекций трем студентам, из которых один регулярно готов, другой — гораздо менее регулярно, а третьему не хватает подготовки и способностей. Таковы обязанности на кафедре математики».
Едва Гаусс нашел студентов, способных с пользой провести годы обучения, он очень ими заинтересовался. Его корреспонденция полна писем с советами, в которых он дает им подробные объяснения. Что касается неспособных или немотивированных студентов — что правда, то правда: Гаусс действительно проявлял в общении с ними мало терпения. Ученый всегда надеялся, что его ученики смогут работать и думать самостоятельно, так что гораздо важнее не объяснения преподавателей, а их собственные усилия. Однако подобное отношение вступало в конфликт с педагогическими идеями XIX века, и только по этой причине Гаусса часто описывают как плохого преподавателя, обеспокоенного только собственными исследованиями. Но тот факт, что Гаусс был наставником Бернхарда Римана (1826-1866) — возможно, самого известного математика второй половины XIX века, должен снять с него любые обвинения в нерадивом отношении к преподавательским обязанностям.
ГЛАВА 3
Метод нахождения планет
Едва достигнув 25 лет, Гаусс уже внес значительный вклад в математику. Однако слава об ученом распространилась по всему континенту благодаря его астрономическим работам, связанным с вычислением орбиты Цереры. Для этого Гаусс воспользовался методом наименьших квадратов — одним из своих важнейших математических открытий.
С юных лет Гаусс пользовался известностью и уважением среди коллег и преподавателей и получал материальную поддержку от герцога Брауншвейгского. Однако международная слава пришла к ученому только с первым успехом в области астрономии. Это произошло благодаря вычислению орбиты планеты Цереры, которая сегодня отнесена к карликовым планетам.
Догадка, что между орбитами Марса и Юпитера расположена неизвестная планета, была высказана Иоганном Элертом Боде (1747-1826) в 1772 году. Его рассуждения основывались на законе Тициуса — Боде, предложенном Иоганном Даниэлем Тициусом (1729-1796) в 1766 году. Еще со времен Коперника было очевидно, что расстояние между Марсом и Юпитером ненормально большое. Поэтому, по мере развития знаний об орбитах планет, астрономы пытались найти закон, который объяснял бы расстояния между орбитами и с помощью которого можно было бы открывать новые небесные тела. Первый закон такого типа (строго говоря, его следовало бы называть правилом) был предложен немецким физиком Иоганном Даниэлем Тициусом в то время, когда были известны только планеты Солнечной системы до Сатурна. Согласно этому закону расстояние от каждой планеты до Солнца в астрономических единицах (1 а.е. равна расстоянию от Земли до Солнца) задано следующим правилом:
a = (n+4)/10
где n = 0, 3, 6, 12, 24, 48, то есть каждое значение n, начиная с 3, в два раза больше предыдущего, и а представляет собой наибольшую полуось орбиты. Этот закон затем был использован директором обсерватории Берлина, Иоганном Боде, и стал известен как закон Тициуса — Боде. Если мы вычислим первые восемь чисел ряда, получим такие результаты.
n | а (в а. е.) |
0 | 0,4 |
3 | 0,7 |
6 | 1 |
12 | 1,6 |
24 | 2,8 |
48 | 5,2 |
96 | 10 |
192 | 19,6 |
При сравнении этих вычислений с известными расстояниями до открытых к тому времени планет получались следующие результаты.
Планета | n | Расстояние по закону Т-Б | Реальное расстояние |
Меркурий | 0 | 0,4 | 0,39 |
Венера | 3 | 0,7 | 0,72 |
Земля | 6 | 1 | 1 |
Марс | 12 | 1,6 | 1,52 |
24 | 2,8 | ||
Юпитер | 48 | 5,2 | 5,2 |
Сатурн | 96 | 10 | 9,54 |
192 | 19,6 |
Как можно заметить, приближение довольно хорошее, хотя его можно было посчитать простым совпадением, поскольку Тициус никак не обосновал свое правило. Однако открытие Уильямом Гершелем (1738-1822) в 1781 году новой планеты, Урана, подтвердило справедливость закона Тициуса — Боде. Уран был обнаружен на расстоянии 19,18 а.е. от Солнца, в то время как правилом предполагалось 19,6. За открытие планеты Гершель получил пособие 200 фунтов в год и титул кавалера.