Читаем Эффективное использование STL полностью

Предположим, мы хотим создать контейнер map, ассоциирующий int с Widget, и инициализировать созданное множество конкретными значениями. Все выглядит очень просто:

map m;

m[1]=1.50;

m[2]=3.67;

m[3]=10.5;

m[4]=45.8;

m[5]=0.0003;

Настолько просто, что легко упустить, что же здесь, собственно, происходит. А это очень плохо, потому что в действительности происходящее может заметно ухудшить быстродействие программы.

Функция operator[] контейнеров map никак не связана с функциями operator[] контейнеров vector, deque и string, а также со встроенным оператором [], работающим с массивами. Функция map::operator[] упрощает операции «обновления с возможным созданием». Иначе говоря, при наличии объявления map m команда m[k]=v; проверяет, присутствует ли ключ k в контейнере. Если ключ отсутствует, он добавляется вместе с ассоциированным значением v. Если ключ уже присутствует, ассоциированное с ним значение заменяется на v.

Для этого operator[] возвращает ссылку на объект значения, ассоциированного с ключом k, после чего v присваивается объекту, к которому относится эта ссылка. При обновлении значения, ассоциированного с существующим ключом, никаких затруднений не возникает — в контейнере уже имеется объект, ссылка на который возвращается функцией operator[]. Но при отсутствии ключа k готового объекта, на который можно было бы вернуть ссылку, не существует. В этом случае объект создается конструктором по умолчанию, после чего operator[] возвращает ссылку на созданный объект.

Вернемся к началу исходного примера:

map m;

m[1]=1.50;

Выражение m[1] представляет собой сокращенную запись для m.operator[](1), поэтому во второй строке присутствует вызов map::operator[]. Функция должна вернуть ссылку на ассоциированный объект Widget. В данном примере m еще не содержит ни одного элемента, поэтому элемент с ключом 1 не существует. Конструктор по умолчанию создает объект Widget, ассоциируемый с ключом 1, и возвращает ссылку на этот объект. Наконец, созданному объекту Widget присваивается значение 1.50.

Иначе говоря, команда

m[1]=1.50:

функционально эквивалентна следующему фрагменту:

typedef map intWidgetMap; // Вспомогательное определение типа

pair result =       // Создание нового

 m.insert(intWidgetMap::value_type(1, Widget)); // элемента с ключом 1

                                                  // и ассоциированным объектом, созданным

                                                  // конструктором по умолчанию; комментарии

                                                  // по поводу value_type

                                                  // приведены далее

result.first->second = 1.50; // Присваивание значения

                             // созданному объекту

Теперь понятно, почему такой подход ухудшает быстродействие программы. Сначала мы конструируем объект Widget, а затем немедленно присваиваем ему новое значение. Конечно, правильнее было бы сразу сконструировать Widget с нужными данными вместо того, чтобы конструировать Widget по умолчанию и затем выполнять присваивание. Следовательно, вызов operator[] было бы правильнее заменить прямолинейным вызовом insert:

m.insert(intWidgetMap::value_type(1, 1.50));

С функциональной точки зрения эта конструкция эквивалентна фрагменту, приведенному выше, но она позволяет сэкономить три вызова функций: создание временного объекта Widget конструктором по умолчанию, уничтожение этого временного объекта и оператор присваивания Widget. Чем дороже обходятся эти вызовы, тем большую экономию обеспечивает применение map::insert вместо map::operator[].

В приведенном выше фрагменте используется определение типа value_type, предоставляемое всеми стандартными контейнерами. Помните, что для map и multimap (а также для нестандартных контейнеров hash_map и hash_multimap — совет 25) тип элемента всегда представляет собой некую разновидность pair.

Я уже упоминал о том, что operator[] упрощает операции «обновления с возможным созданием». Теперь мы знаем, что при создании insert работает эффективнее, чем operator[]. При обновлении, то есть при наличии эквивалентного ключа (см. совет 19) в контейнере map, ситуация полностью меняется. Чтобы понять, почему это происходит, рассмотрим потенциальные варианты обновления:

m[k] = v; // Значение, ассоциируемое

          // с ключом k, заменяется на v при помощи оператора []

Перейти на страницу:

Похожие книги

Основы программирования в Linux
Основы программирования в Linux

В четвертом издании популярного руководства даны основы программирования в операционной системе Linux. Рассмотрены: использование библиотек C/C++ и стан­дартных средств разработки, организация системных вызовов, файловый ввод/вывод, взаимодействие процессов, программирование средствами командной оболочки, создание графических пользовательских интерфейсов с помощью инструментальных средств GTK+ или Qt, применение сокетов и др. Описана компиляция программ, их компоновка c библиотеками и работа с терминальным вводом/выводом. Даны приемы написания приложений в средах GNOME® и KDE®, хранения данных с использованием СУБД MySQL® и отладки программ. Книга хорошо структурирована, что делает обучение легким и быстрым. Для начинающих Linux-программистов

Нейл Мэтью , Ричард Стоунс , Татьяна Коротяева

ОС и Сети / Программирование / Книги по IT
97 этюдов для архитекторов программных систем
97 этюдов для архитекторов программных систем

Успешная карьера архитектора программного обеспечения требует хорошего владения как технической, так и деловой сторонами вопросов, связанных с проектированием архитектуры. В этой необычной книге ведущие архитекторы ПО со всего света обсуждают важные принципы разработки, выходящие далеко за пределы чисто технических вопросов.?Архитектор ПО выполняет роль посредника между командой разработчиков и бизнес-руководством компании, поэтому чтобы добиться успеха в этой профессии, необходимо не только овладеть различными технологиями, но и обеспечить работу над проектом в соответствии с бизнес-целями. В книге более 50 архитекторов рассказывают о том, что считают самым важным в своей работе, дают советы, как организовать общение с другими участниками проекта, как снизить сложность архитектуры, как оказывать поддержку разработчикам. Они щедро делятся множеством полезных идей и приемов, которые вынесли из своего многолетнего опыта. Авторы надеются, что книга станет источником вдохновения и руководством к действию для многих профессиональных программистов.

Билл де Ора , Майкл Хайгард , Нил Форд

Программирование, программы, базы данных / Базы данных / Программирование / Книги по IT
Программист-прагматик. Путь от подмастерья к мастеру
Программист-прагматик. Путь от подмастерья к мастеру

Находясь на переднем крае программирования, книга "Программист-прагматик. Путь от подмастерья к мастеру" абстрагируется от всевозрастающей специализации и технических тонкостей разработки программ на современном уровне, чтобы исследовать суть процесса – требования к работоспособной и поддерживаемой программе, приводящей пользователей в восторг. Книга охватывает различные темы – от личной ответственности и карьерного роста до архитектурных методик, придающих программам гибкость и простоту в адаптации и повторном использовании.Прочитав эту книгу, вы научитесь:Бороться с недостатками программного обеспечения;Избегать ловушек, связанных с дублированием знания;Создавать гибкие, динамичные и адаптируемые программы;Избегать программирования в расчете на совпадение;Защищать вашу программу при помощи контрактов, утверждений и исключений;Собирать реальные требования;Осуществлять безжалостное и эффективное тестирование;Приводить в восторг ваших пользователей;Формировать команды из программистов-прагматиков и с помощью автоматизации делать ваши разработки более точными.

А. Алексашин , Дэвид Томас , Эндрю Хант

Программирование / Книги по IT