Читаем Эффективное использование STL полностью

Что же остается после всего сказанного? «Обобщенный последовательный контейнер», в котором нельзя использовать reserve, capacity, operator[], push_front, pop_front, splice и вообще любой алгоритм, работающий с итераторами произвольного доступа; контейнер, у которого любой вызов insert и erase выполняется с линейной сложностью и приводит к недействительности всех итераторов, указателей и ссылок; контейнер, несовместимый с языком С и не позволяющий хранить логические величины. Захочется ли вам использовать подобный контейнер в своем приложении? Вряд ли.

Если умерить амбиции и отказаться от поддержки list, вы все равно теряете reserve, capacity, push_front и pop_front; вам также придется полагать, что вызовы insert и erase выполняются с линейной сложностью, а все итераторы, указатели и ссылки становятся недействительными; вы все равно теряете совместимость с С и не можете хранить в контейнере логические величины.

Даже если отказаться от последовательных контейнеров и взяться за ассоциативные контейнеры, дело обстоит не лучше. Написать код, который бы одновременно работал с set и map, практически невозможно, поскольку в set хранятся одиночные объекты, а в map хранятся пары объектов. Даже совместимость с set и multiset (или map и multimap) обеспечивается с большим трудом. Функция insert, которой при вызове передается только значение вставляемого элемента, возвращает разные типы для set/map и их multi-аналогов, при этом вы должны избегать любых допущений относительно того, сколько экземпляров данной величины хранится в контейнере. При работе с map и multimap приходится обходиться без оператора [], поскольку эта функция существует только в map.

Согласитесь, игра не стоит свеч. Контейнеры действительно отличаются друг от друга, обладают разными достоинствами и недостатками. Они не были рассчитаны на взаимозаменяемость, и с этим фактом остается только смириться. Любые попытки лишь искушают судьбу, а она этого не любит.

Но рано или поздно наступит день, когда окажется, что первоначальный выбор контейнера был, мягко говоря, не оптимальным, и вы захотите переключиться на другой тип. При изменении типа контейнера нужно не только исправить ошибки, обнаруженные компилятором, но и проанализировать весь код, где он используется, и разобраться, что следует изменить в свете характеристик нового контейнера и правил перехода итераторов, указателей и ссылок в недействительное состояние. Переходя с vector на другой тип контейнера, вы уже не сможете рассчитывать на С-совместимую структуру памяти, а при обратном переходе нужно проследить за тем, чтобы контейнер не использовался для хранения bool.

Если вы знаете, что тип контейнера в будущем может измениться, эти изменения можно упростить обычным способом — инкапсуляцией. Одно из простейших решений основано на использовании определений typedef для типов контейнера и итератора. Следовательно, фрагмент

class Widget{...};

vector vw;

Widget bestWidget;

… // Присвоить значение bestWidget

vector::iterator i = // Найти Widget с таким же значением,

 find(vw.begin,vw.end.bestWidget) // как у bestWidget

записывается в следующем виде:

class Widget{...};

typedef vector WidgetContaner;

typedef WidgetContainer:iterator WCIterator;

WidgetContaner vw;

Widget bestWidget;

WCIterator i = find(vw.begin.vw.end,bestWidget);

Подобная запись значительно упрощает изменение типа контейнера, что особенно удобно, когда изменение сводится к простому добавлению нестандартного распределителя памяти (такое изменение не влияет на правила недействительности итераторов/указателей/ссылок).

class Widget{...};

template // В совете 10 объясняется, почему

SpecialAllocator{...}; // необходимо использовать шаблон

typedef vector, SpecialAllocator WidgetContainer;

typedef WidgetContainer::iterator WCIterator;

WidgetContainer vw;// Работает

Widget bestWidget;

WCIterator i=find(vw.begin.vw.end.bestWidget); // Работает

Даже если вас не интересуют аспекты typedef, связанные с инкапсуляцией, вы наверняка оцените экономию времени. Предположим, у вас имеется объект типа

map

 vector::iterator,

 CIStringCompare> // CIStringCompare - сравнение строк

Перейти на страницу:

Похожие книги

Основы программирования в Linux
Основы программирования в Linux

В четвертом издании популярного руководства даны основы программирования в операционной системе Linux. Рассмотрены: использование библиотек C/C++ и стан­дартных средств разработки, организация системных вызовов, файловый ввод/вывод, взаимодействие процессов, программирование средствами командной оболочки, создание графических пользовательских интерфейсов с помощью инструментальных средств GTK+ или Qt, применение сокетов и др. Описана компиляция программ, их компоновка c библиотеками и работа с терминальным вводом/выводом. Даны приемы написания приложений в средах GNOME® и KDE®, хранения данных с использованием СУБД MySQL® и отладки программ. Книга хорошо структурирована, что делает обучение легким и быстрым. Для начинающих Linux-программистов

Нейл Мэтью , Ричард Стоунс , Татьяна Коротяева

ОС и Сети / Программирование / Книги по IT
97 этюдов для архитекторов программных систем
97 этюдов для архитекторов программных систем

Успешная карьера архитектора программного обеспечения требует хорошего владения как технической, так и деловой сторонами вопросов, связанных с проектированием архитектуры. В этой необычной книге ведущие архитекторы ПО со всего света обсуждают важные принципы разработки, выходящие далеко за пределы чисто технических вопросов.?Архитектор ПО выполняет роль посредника между командой разработчиков и бизнес-руководством компании, поэтому чтобы добиться успеха в этой профессии, необходимо не только овладеть различными технологиями, но и обеспечить работу над проектом в соответствии с бизнес-целями. В книге более 50 архитекторов рассказывают о том, что считают самым важным в своей работе, дают советы, как организовать общение с другими участниками проекта, как снизить сложность архитектуры, как оказывать поддержку разработчикам. Они щедро делятся множеством полезных идей и приемов, которые вынесли из своего многолетнего опыта. Авторы надеются, что книга станет источником вдохновения и руководством к действию для многих профессиональных программистов.

Билл де Ора , Майкл Хайгард , Нил Форд

Программирование, программы, базы данных / Базы данных / Программирование / Книги по IT
Программист-прагматик. Путь от подмастерья к мастеру
Программист-прагматик. Путь от подмастерья к мастеру

Находясь на переднем крае программирования, книга "Программист-прагматик. Путь от подмастерья к мастеру" абстрагируется от всевозрастающей специализации и технических тонкостей разработки программ на современном уровне, чтобы исследовать суть процесса – требования к работоспособной и поддерживаемой программе, приводящей пользователей в восторг. Книга охватывает различные темы – от личной ответственности и карьерного роста до архитектурных методик, придающих программам гибкость и простоту в адаптации и повторном использовании.Прочитав эту книгу, вы научитесь:Бороться с недостатками программного обеспечения;Избегать ловушек, связанных с дублированием знания;Создавать гибкие, динамичные и адаптируемые программы;Избегать программирования в расчете на совпадение;Защищать вашу программу при помощи контрактов, утверждений и исключений;Собирать реальные требования;Осуществлять безжалостное и эффективное тестирование;Приводить в восторг ваших пользователей;Формировать команды из программистов-прагматиков и с помощью автоматизации делать ваши разработки более точными.

А. Алексашин , Дэвид Томас , Эндрю Хант

Программирование / Книги по IT