Читаем Эффективное использование STL полностью

• Должна ли структура памяти контейнера соответствовать правилам языка C? Если должна, остается лишь использовать vector (совет 16).

• Насколько критична скорость поиска? Если скорость поиска критична, рассмотрите хэшированные контейнеры (совет 25), сортированные векторы (совет 23) и стандартные ассоциативные контейнеры — вероятно, именно в таком порядке.

• Может ли в контейнере использоваться подсчет ссылок? Если подсчет ссылок вас не устраивает, держитесь подальше от string, поскольку многие реализации string построены на этом механизме (совет 13). Также следует избегать контейнера rope (совет 50). Конечно, средства для представления строк вам все же понадобятся — попробуйте использовать vector.

• Потребуется ли транзакционная семантика для операций вставки и удаления? Иначе говоря, хотите ли вы обеспечить надежную отмену вставок и удалений? Если хотите, вам понадобится узловой контейнер. При использовании транзакционной семантики для многоэлементных (например, интервальных — см. совет 5) вставок следует выбрать list — единственный стандартный контейнер, обладающий этим свойством. Транзакционная семантика особенно важна при написании кода, безопасного по отношению к исключениям. Вообще говоря, транзакционная семантика реализуется и для блоковых контейнеров, но за это приходится расплачиваться быстродействием и усложнением кода. За дополнительной информацией обращайтесь к книге Саттера «Exceptional C++» [8].

• Нужно ли свести к минимуму количество недействительных итераторов, указателей и ссылок? Если нужно — выбирайте узловые контейнеры, поскольку в них операции вставки и удаления никогда не приводят к появлению недействительных итераторов, указателей и ссылок (если они не относятся к удаляемым элементам). В общем случае операции вставки и удаления в блоковых контейнерах могут привести к тому, что все итераторы, указатели и ссылки станут недействительными.

• Не подойдет ли вам последовательный контейнер с итераторами произвольного доступа, в котором указатели и ссылки на данные всегда остаются действительными, если из контейнера ничего не удаляется, а вставка производится только в конце? Ситуация весьма специфическая, но если вы с ней столкнетесь — выбирайте deque. Следует заметить, что итераторы deque могут стать недействительными, даже если вставка производится только в конце контейнера. Это единственный стандартный контейнер STL, у которого итераторы могут стать недействительными при действительных указателях и ссылках.

Вряд ли эти вопросы полностью исчерпывают тему. Например, в них не учитывается тот факт, что разные типы контейнеров используют разные стратегии выделения памяти (некоторые аспекты этих стратегий описаны в советах 10 и 14). Но и этот список наглядно показывает, что алгоритмическая сложность выполняемых операций — далеко не единственный критерий выбора. Бесспорно, она играет важную роль, но приходится учитывать и другие факторы.

При выборе контейнеров STL предоставляет довольно большое количество вариантов, а за пределами STL их оказывается еще больше. Прежде чем принимать окончательное решение, обязательно изучите все возможные варианты. «…Контейнер, используемый в большинстве случаев»? Я так не думаю.

<p>Совет 2. Остерегайтесь иллюзий контейнерно-независимого кода</p>

Основным принципом STL является обобщение. Массивы обобщаются в контейнеры, параметризованные по типам хранящихся объектов. Функции обобщаются в алгоритмы, параметризованные по типам используемых итераторов. Указатели обобщаются в итераторы, параметризованные по типам объектов, на которые они указывают.

Но это лишь начало. Конкретные разновидности контейнеров обобщаются в категории (последовательные и ассоциативные), а похожие контейнеры наделяются сходными функциями. Стандартные блоковые контейнеры (совет 1) обладают итераторами произвольного доступа, тогда как стандартные узловые контейнеры (также описанные в совете 1) поддерживают двусторонние итераторы. Последовательные контейнеры поддерживают операции push_front и/или push_back, у ассоциативных контейнеров такие операции отсутствуют. В ассоциативных контейнерах реализованы функции lower_bound, upper_bound и equal_range, обладающие логарифмической сложностью, а в последовательных контейнерах их нет.

Перейти на страницу:

Похожие книги

Основы программирования в Linux
Основы программирования в Linux

В четвертом издании популярного руководства даны основы программирования в операционной системе Linux. Рассмотрены: использование библиотек C/C++ и стан­дартных средств разработки, организация системных вызовов, файловый ввод/вывод, взаимодействие процессов, программирование средствами командной оболочки, создание графических пользовательских интерфейсов с помощью инструментальных средств GTK+ или Qt, применение сокетов и др. Описана компиляция программ, их компоновка c библиотеками и работа с терминальным вводом/выводом. Даны приемы написания приложений в средах GNOME® и KDE®, хранения данных с использованием СУБД MySQL® и отладки программ. Книга хорошо структурирована, что делает обучение легким и быстрым. Для начинающих Linux-программистов

Нейл Мэтью , Ричард Стоунс , Татьяна Коротяева

ОС и Сети / Программирование / Книги по IT
97 этюдов для архитекторов программных систем
97 этюдов для архитекторов программных систем

Успешная карьера архитектора программного обеспечения требует хорошего владения как технической, так и деловой сторонами вопросов, связанных с проектированием архитектуры. В этой необычной книге ведущие архитекторы ПО со всего света обсуждают важные принципы разработки, выходящие далеко за пределы чисто технических вопросов.?Архитектор ПО выполняет роль посредника между командой разработчиков и бизнес-руководством компании, поэтому чтобы добиться успеха в этой профессии, необходимо не только овладеть различными технологиями, но и обеспечить работу над проектом в соответствии с бизнес-целями. В книге более 50 архитекторов рассказывают о том, что считают самым важным в своей работе, дают советы, как организовать общение с другими участниками проекта, как снизить сложность архитектуры, как оказывать поддержку разработчикам. Они щедро делятся множеством полезных идей и приемов, которые вынесли из своего многолетнего опыта. Авторы надеются, что книга станет источником вдохновения и руководством к действию для многих профессиональных программистов.

Билл де Ора , Майкл Хайгард , Нил Форд

Программирование, программы, базы данных / Базы данных / Программирование / Книги по IT
Программист-прагматик. Путь от подмастерья к мастеру
Программист-прагматик. Путь от подмастерья к мастеру

Находясь на переднем крае программирования, книга "Программист-прагматик. Путь от подмастерья к мастеру" абстрагируется от всевозрастающей специализации и технических тонкостей разработки программ на современном уровне, чтобы исследовать суть процесса – требования к работоспособной и поддерживаемой программе, приводящей пользователей в восторг. Книга охватывает различные темы – от личной ответственности и карьерного роста до архитектурных методик, придающих программам гибкость и простоту в адаптации и повторном использовании.Прочитав эту книгу, вы научитесь:Бороться с недостатками программного обеспечения;Избегать ловушек, связанных с дублированием знания;Создавать гибкие, динамичные и адаптируемые программы;Избегать программирования в расчете на совпадение;Защищать вашу программу при помощи контрактов, утверждений и исключений;Собирать реальные требования;Осуществлять безжалостное и эффективное тестирование;Приводить в восторг ваших пользователей;Формировать команды из программистов-прагматиков и с помощью автоматизации делать ваши разработки более точными.

А. Алексашин , Дэвид Томас , Эндрю Хант

Программирование / Книги по IT