Изначально уравнение влияния применила Google при разработке своего алгоритма ранжирования страниц PageRank – незадолго до рубежа веков. Компания вычисляла стационарные распределения для сайтов в предположении, что пользователи случайным образом щелкают по ссылкам на посещенных сайтах, чтобы выбрать следующий, на который перейдут. По этой причине в результатах поиска они выше ставили сайты с более высокими значениями
За последние два десятилетия это привело к неожиданному результату. Система, которая первоначально создавалась для измерения влияния, превратилась в его
Один бывший сотрудник Instagram рассказал мне, что изначально основатели компании очень неохотно применяли в бизнесе алгоритмы и математику. «Они видели в Instagram нечто очень нишевое, артистичное и считали алгоритмы негодными», – говорил он. Эта платформа предназначалась для обмена фотографиями между близкими друзьями. Все изменилось после успеха Facebook. «За последние пару лет платформа стала совершенно иной. Один процент ее пользователей имеет более 90 % подписчиков», – заметил мой собеседник.
Вместо того чтобы побуждать пользователей подписываться только на друзей, компания применила к своей сети уравнение влияния. Оно еще сильнее раскручивало самые популярные аккаунты. Возникала обратная связь, и аккаунты знаменитостей росли всё сильнее. Едва Instagram стал использовать уравнение влияния, как и все платформы социальных сетей до него, его популярность резко возросла – в нем более миллиарда пользователей.
Математические методы, используемые при конструировании соцсетей, появились задолго до возможности создания таких приложений. Вовсе не Google изобрела уравнение влияния: его происхождение восходит к Маркову, который предложил свойство, получившее его имя, для рассмотрения цепей состояний, где каждое новое состояние зависит только от предыдущего. Именно это и происходит при моем случайном путешествии по Instagram.
Решая уравнение 5 для моего мира из пяти человек, я слегка поленился. Я нашел ответ – вероятность, с которой буду тем или иным человеком в отдаленном будущем, – многократно перемножая матрицу
Такой метод в итоге приводит к правильному ответу, но он не особо изящен. И Google им не пользуется. Свыше ста лет назад математики Оскар Перрон и Георг Фробениус показали, что для любой цепи Маркова с матрицей