Я объясню, как умножаются матрицы, в примечаниях[107], но важнее всего обратить внимание на два столбца чисел в скобках по обеим сторонам от знака равенства. Они называются векторами, и каждый элемент вектора – число от 0 до 1, которое определяет вероятность того, что я окажусь определенным человеком в определенный день. В день 1 я Дэвид Самптер, так что число в моей строке равно 1, а остальные элементы вектора – 0. В день 2 я могу оказаться либо Селеной Гомес, либо Дуэйном Джонсоном (поскольку Дэвид Самптер подписан только на них), и в этом векторе есть два числа 1/2 для них, а остальные равны 0.
В день 3 все становится интереснее. Мы имеем:
Я могу оказаться кем угодно из пяти человек. Скорее всего, я буду Дэвидом Самптером или Селеной Гомес, но с вероятностью 1/6 могу оказаться также и Джонсоном, и одним из китайских френдов Селены. Давайте произведем умножение еще раз, чтобы найти, кем я могу оказаться в день 4.
Теперь мы видим, как знаменитости выходят на центральные роли. Глядя на вектор вероятностей, вычисленный для дня 4, мы обнаруживаем, что вероятность оказаться Скалой или Селеной Гомес – 23/72 – почти вчетверо выше, чем вероятность оказаться Дэвидом Самптером (всего 6/72).
Каждый раз, умножая нашу матрицу с переходными вероятностями на вектор очередного дня, мы переходим на один день в будущее. А теперь вопрос, который стал движущей силой для всех моих путешествий по населению мира: насколько часто я буду одним из этих пяти людей через очень большой промежуток времени?
Именно на этот вопрос и отвечает уравнение 5. Чтобы увидеть как, заменим матрицу и векторы символами. Матрицу мы уже назвали
A∙
где
Переходим к уравнению 5, которое я повторю здесь:
A∙
Мы считаем, что прошло бесконечно много времени, поэтому разницы между
Уравнение 5 определяет вероятность того, что я буду определенным человеком в какой-то день в отдаленном будущем. Осталось решить уравнение. Для вселенной из пяти человек, в которой я сейчас обитаю, мы находим, что:
Обратите внимание, что два вектора слева и справа от знака равенства одинаковы. Это значит, что, сколько бы раз я ни умножал на этот вектор переходную матрицу
Вывод? У меня вдвое больше шансов проснуться Дуэйном Джонсоном, чем Дэвидом Самптером, и еще больше – Селеной Гомес. Больше даже шансов стать Ван Фан и Ли Вэем, чем Дэвидом. Если перевернуть вероятности, можно узнать, сколько времени мы проведем в телах всех жителей нашего мира. Шестьдесят дней – примерно два месяца, и стационарное распределение говорит нам, что в среднем 8 дней из них я буду Дэвидом, 16 – Джонсоном, 18 – Гомес, по 9 – Ван Фан и Ли Вэем. Когда время сдвигается к бесконечности, более половины жизни я проведу как знаменитость.
Ясно, что мы не просыпаемся каждое утро разными людьми, но Instagram дает нам возможность заглянуть в чужую жизнь. Каждая увиденная фотография – момент, когда подписчик несколько секунд ощущает, каково быть кем-то еще.
Twitter, Facebook и Snapchat тоже дают возможность распространять информацию и влиять на чувства и мысли подписчиков. Стационарное распределение
Вот почему уравнение 5 – уравнение влияния – так ценно для сетевых гигантов. Оно говорит им, кто в их соцсети самые важные люди, и при этом компании ничего не знают о том, кто они в реальности и чем занимаются. Измерение влиятельности – всего лишь вопрос матричной алгебры, и этим бездумно и некритично занимается компьютер.