Читаем – Число Бога. Золотое сечение – формула мироздания полностью

К сожалению, Роджер Герц-Фишлер доказал, что анализ Дакворта, скорее всего, построен на математическом недоразумении. Поскольку подобное заблуждение типично для многих «открытий», связанных с золотым сечением, я вкратце объясню, в чем тут дело.

Рис. 91

Предположим, у нас есть два положительных числа m и M, такие, что M больше m. Ну, например, = 317, и это количество страниц в последней прочитанной вами книге, а = 160, и это ваш рост в сантиметрах. Отметим эти два числа на отрезке прямой (проследим, чтобы относительные пропорции при этом сохранялись), как на рис. 91. Отношение меньшей части к большей равно m/M = 160/317 = 0,504, а отношение большей к целому – M/(M m) = 317/477 = 0,665. Вы, конечно, отметите, что значение M/(M m) ближе к 1/=0,618, чем m/M. Можно математически доказать, что это всегда так (проверьте на количестве страниц в книге, которую прочитали последней, и собственном росте в сантиметрах). По определению золотого сечения, если отрезок разделен в этом соотношении, то m/M M/(M m) в точности. Следовательно, возникает искушение сделать вывод, что если исследовать много отношений чисел, например, длин эпизодов, в поисках возможного присутствия золотого сечения, неважно, какое отношение мы возьмем – меньшей части к большей или большей к целому. Так вот, я только что доказал, что очень даже важно. Излишне рьяный поклонник золотого сечения, желающий доказать, что рост читателей находится в отношении золотого сечения с количеством страниц в прочитанных ими книгах, вероятно, сумеет это сделать, если представит данные в формате M/(M m), то есть в таком виде, который делает их ближе к 1/. Именно это и приключилось с Даквортом. Он принял неудачное решение прибегнуть в ходе анализа только к соотношению M/(M m), поскольку решил, что так «несколько точнее», и поэтому сжал и исказил данные и лишил свой анализ статистической достоверности. Более того, Леонард А. Керчин из Оттавского университета и Роджер Герц-Фишлер повторили в 1981 году анализ данных Дакворта, пользуясь, однако, соотношением m/M, и показали, что в «Энеиде» нет ни следа золотого сечения. Они сделали другой вывод – что «Вергилий склонен к случайному распределению длины эпизодов». Кроме того, Дакворт ошибочно «наделил» Вергилия познаниями, что отношение двух последовательных чисел Фибоначчи – это достаточно точное приближение к золотому сечению. Керчин и Герц-Фишлер, напротив, убедительно продемонстрировали, что даже Герон Александрийский, который жил позднее Вергилия и был одним из выдающихся математиков своего времени, не знал об этом соотношении между золотым сечением и числами Фибоначчи.

К сожалению, заявления о Вергилии и по-прежнему появляются в большинстве книг и статей о золотом сечении, что в очередной раз показывает, как велико обаяние «золотой нумерологии».

Все попытки обнаружить золотое сечение в разнообразных произведениях изобразительного искусства, в музыке и поэзии – как обоснованные, так и необоснованные – опираются на предположение, что на свете существует канон идеальной красоты и что его можно воплотить на практике. Однако история показала, что художники, создававшие произведения, которые надолго их пережили, по большей части как раз отходили от подобных академических представлений. Золотое сечение, бесспорно, играет важную роль во многих областях математики и естественных наук, однако, по моему скромному убеждению, нельзя делать из него незыблемый эстетический стандарт – ни в пропорциях человеческого тела, ни в качестве мерила в изящных искусствах.

<p>Звездное небо над нами и плиточный пол у нас под ногами</p>

В конечном счете, именно ради понимания мы и затеяли всю науку, а наука – это все же нечто большее, нежели просто бездумное вычисление.

Роджер Пенроуз (р. 1931)

Запутанная история золотого сечения началась в VI веке до нашей эры и дошла до сегодняшнего дня. Эти двадцать шесть столетий пронизаны двумя основными нитями повествования. Я имею в виду, с одной стороны, пифагорейский девиз «Все есть число», который поразительным образом воплощается в действительность в самом буквальном смысле – в той роли, которую играет золотое сечение в природе, от филлотаксиса до формы галактик, – а с другой стороны, пифагорейскую одержимость символическим значением правильного пятиугольника, которая преобразилась в ложное, по моему мнению, представление, что золотое сечение – это универсальной канон идеала красоты. После всего этого читатель вправе задаться вопросом, стоит ли и дальше исследовать это простое, на первый взгляд, правило разделения отрезка.

<p>Мощенная плитками дорога к квазикристаллам</p>
Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное