Читаем – Число Бога. Золотое сечение – формула мироздания полностью

Вероятное объяснение было найдено в 1991 году, когда математик Сергей Емельянович Бурков из Института теоретической физики им. Ландау в Москве обнаружил, что для квазипериодического замощения плоскости не обязательно нужны плитки двух видов. Бурков доказал, что квазипериодичности можно добиться даже при помощи одной плитки десятиугольной формы, если допустить, чтобы плитки перекрывались: такое свойство ранее не допускалось при замощениях плоскости. Пять лет спустя немецкий математик Петра Гуммельт из Университета имени Эрнста Морица Арндта в городе Грайфсвальд убедительно доказала, что мозаику Пенроуза можно получить при помощи одного «раскрашенного» десятиугольника в сочетании с конкретным правилом, допускающим перекрывание: два десятиугольника могут накладываться друг на друга, только если при этом перекрываются темные участки рисунка (рис. 108). Этот десятиугольник также имеет прямое отношение к золотому сечению: радиус круга, в который вписан правильный десятиугольник со стороной 1, равен .

Рис. 108

Работа Гуммельт позволила, наконец, преобразовать математику в физику. Физики Пол Стейнхардт из Принстонского университета и Хён-Цай Джун из Университета Седжун в Сеуле показали, что чисто математические законы перекрывания плиток вполне можно перевести в физическую картину, где «квазиединичные ячейки» представляют собой группы атомов, просто обладают общими атомами. Стейнхардт и Джун предположили, что квазикристаллы – это структуры, где идентичные группы атомов, то есть квазиединичные ячейки, делят некоторые атомы с соседками, а узор, который при этом образуется, обеспечивает максимальную плотность. Иначе говоря, квазипериодическая упаковка порождает систему более стабильную (больше плотность, меньше энергия), чем любая другая. В 1998 году Стейнхардт, Джун и их коллеги попытались экспериментально подтвердить свою модель. Они бомбардировали квазикристаллический сплав алюминия, никеля и кобальта рентгеновскими и электронными лучами. Полученные в результате рассеяния лучей изображения поразительно соответствовали картине перекрывающихся десятиугольников. Это видно на рис. 109, где на получившийся результат наложили узор из десятиугольных плиток. Последующие эксперименты, однако, дали не такой однозначный результат. Тем не менее, сохраняется общее впечатление, что модель Стейнхардта-Джонга объясняет устройство квазикристаллов.

Рис. 109

Рис. 110

Изображения поверхности квазикристаллов, сделанные в 1994 и 2001 году, продемонстрировали еще одно чудесное свойство, которое связывает их структуру с золотым сечением. При помощи сканирующего туннельного микроскопа ученые из Базельского университета в Швейцарии и лаборатории Университета штата Айова в городе Эймс сумели получить высококачественные изображения поверхности квазикристаллов из сплава алюминия, меди и железа и алюминия, палладия и марганца. На изображениях видны плоские «террасы» (рис. 110), которые спускаются либо высокими, либо низкими ступеньками (конечно, и те, и те измеряются стомиллионными долями дюйма). Так вот, оказалось, что отношение этих высот равно золотому сечению!

Квазикристаллы – великолепный пример того, как какая-то концепция начиналась в сфере чистой математики (была основана на золотом сечении), а потом оказалось, что она объясняет самый что ни на есть реальный природный феномен. Но самое поразительное даже не это, а то, что – в данном конкретном случае – начало концепции было положено в сфере занимательной математики. Как математикам удалось «предвосхитить» грядущие открытия физиков? Этот вопрос становится еще более интересным, если вспомнить, что пятисторонней симметрией интересовались еще Дюрер и Кеплер в XVI и XVII веке. Так, может быть, даже самые отвлеченные математические темы когда-нибудь найдут воплощение в объяснении природных явлений или в творениях рук человеческих? К этому вопросу мы вернемся в главе 9.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное