Читаем Числа: от арифметики до высшей математики полностью

Мы используем знак «×», поскольку правильный ответ мы получаем при перемножении знаменателей. А как обстоит дело с числителями? На первый взгляд кажется, что числитель не изменяется, но ведь 1 × 1 = 1. Поэтому, чтобы ответить на этот вопрос, надо выяснить, как обстоит дело с дробями, числитель которых отличается от 1. Предположим, нам надо разделить 10 на пять равных частей. Каждая часть будет равна одной пятой от 10. Поскольку 10 : 5 = 2, следовательно, одна пятая часть от десяти составляет 2. Выражение «одна пятая от десяти» записывается как 1/5 × 10. Теперь попробуем представить это выражение в виде дроби. Во первых, 1/5 может быть преобразована в 2/10, если числитель и знаменатель дроби умножить на 2. Затем 10 можно представить как 10/1, умножить числитель и знаменатель на 3 и получить 30/3.

Теперь мы можем сказать, что 1/5 × 10 — это то же самое, что 2/10 ×  30/3. Теперь, если мы перемножим числитель на числитель и знаменатель на знаменатель, то получим 2 × 30/10 × 3, то есть 60/30, или 2, а это именно тот ответ, который мы ожидали получить.

Рассмотрим другой пример. Предположим, при перемножении 1/3 × 1/2 мы перевели дроби в 4/12 и 6/12, умножив числитель и знаменатель соответственно на 4 и на 6. Теперь мы имеем: 4/12 × 6/12 равно 24/144, если при перемножении мы следуем схеме «числитель × числитель», «знаменатель × знаменатель». Теперь разделим числитель и знаменатель ответа, 24/144, на 24 и получим 1/6, то есть тот ответ, который мы считаем верным результатом при перемножении 1/3 × 1/2.

Точно так же проводят операции деления. Числитель делимого делят на числитель делителя, а знаменатель делимого — на знаменатель делителя. 10/21 : 5/7 = (10 : 5) : (21 : 7), или 2/3, но здесь могут возникнуть осложнения. Что делать в одном или обоих случаях, если деление нацело невозможно? Тогда может оказаться, что и числитель, и знаменатель будут представлять собой дроби, то есть мы получим дроби внутри дробей.

К счастью, такого деления можно избежать.

Давайте вернемся к нашей предыдущей задаче, когда мы делили 10 на 5 равных частей. Мы получили ответ 2 в обоих случаях, то есть 10 : 5 и 10 × 1/5. Число 5 можно представить в виде дроби 5/1, а эту дробь можно рассматривать как перевернутую дробь 1/5. Такие дроби, то есть две дроби, у которых числитель первой равен знаменателю второй и, наоборот, знаменатель первой дроби равен числителю второй, называют обратными. Очевидно, 5/1 — это перевернутая дробь 1/5, то есть дроби 1/5 и 5/1 являются обратными, точно так же обратными являются дроби 2/3 и 3/2; дроби 55/26 и 26/55 и так далее. Далее, если мы утверждаем, что при делении 10 : 5 мы получаем тот же результат, что и при умножении 10 × 1/5, это означает, в свою очередь, что при делении на данное число мы получаем такой же результат, как и при умножении на число, обратное данному. (Обратите внимание, что только делитель можно заменять на обратное число, к делимому это не относится.) Раньше мы с вами уже убедились, что 10/21 : 5/7 = 2/3. Предположим, вместо деления мы провели умножение на обратную дробь: 10/21 × 7/5 = 70/105. Теперь разделим числитель и знаменатель этой дроби на 35. Мы получим 2/3, то есть именно тот результат, который и ожидали получить.

Теперь мы можем поделить 5/7 на 2/3, не опасаясь получить дроби внутри дробей, поскольку вместо деления мы проведем умножение на обратную дробь.

5/7 : 2/3 = 5/7 × 3/2 и получим ответ 15/14.

При перемножении дробей следует помнить, что порядок, в котором перемножаются дроби, не имеет значения. Например, 10/21 × 7/5 — это то же самое, что 10/5 × 7/21. В первом случае мы получаем ответ 10 × 7/21 × 5, а во втором — 10 × 7/5 × 21, наконец, в обоих случаях мы получаем результат 70/105, или (после деления на 35) 2/3.

Следует отметить, что второй вариант удобнее. В первом варианте дроби 10/21 и 7/5 невозможно сократить, во втором варианте дроби 10/5 и 7/21 легко сокращаются. 10/5 — это 2/1, а 7/21 — это 1/3, таким образом, выражение 10/5 × 7/21 преобразовалось в 2/1 × 2/3.

Удобнее работать с меньшими числами, поэтому обычно числитель и знаменатель дроби делят на одно и то же число, не делая никаких перестановок.

Например, в примере 7/10 × 17/49 можно разделить числитель одной дроби и знаменатель другой на одно и то же число (7). Тогда выражение упрощается и приобретает вид: 1/10 × 17/7. Такой пример решается гораздо легче, ответ 17/70, причем, разумеется, каким бы методом мы его ни решали, он не изменяется. Но второй способ, с привлечением сокращения дробей, значительно легче. Прием «сокращения» дробей при перемножении настолько удобен, что многие ученики пытаются внедрить его и при сложении. Но в этом случае прием не работает.

Сумма дробей 7/10 + 17/49 — это совсем не то же самое, что 1/10 + 17/7.

Сумма первого выражения равна 513/490, а второго — 1239/490.

Перейти на страницу:

Все книги серии Популярная наука

Удивительная Солнечная система
Удивительная Солнечная система

Солнечная система – наш галактический дом. Она останется им до тех пор, пока человечество не выйдет к звездам. Но знаем ли мы свой дом? Его размеры, адрес, происхождение, перспективы на будущее и «где что лежит»?Похоже, что мы знаем наш дом недостаточно. Иначе не будоражили бы умы открытия, сделанные в последние годы, открытия подчас удивительные и притом намекающие на то, какую прорву новых знаний мы должны обрести в дальнейшем. Уже в наше время каждая новая книга о Солнечной системе устаревает спустя считаные годы. Очень уж много информации приносят телескопы и межпланетные аппараты. Сплошь и рядом астрономические исследования и даже эксперименты кардинально меняют старые представления о том закоулке Галактики, где мы имеем удовольствие жить.Цель этой книги – дать читателю современное представление о Солнечной системе как части Галактики.

Александр Николаевич Громов

Научная литература / Прочая научная литература / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное