Этот ядерный вопрос до сих пор не получил полного ответа, но один из первых шагов к его решению сделал Игорь Тамм в 1934 году. Незадолго до того экспериментаторы открыли новую частицу — электрически незаряженную, нейтральную и поэтому названную «нейтроном». Во всем, кроме заряда, нейтрон оказался очень похож на протон. Их признали равноправными составляющими ядра и объединили общим названием — нуклон. Уже это решило несколько ядерных головоломок, однако оставался вопрос о силе, связывающей частицы ядра.
Тамм предположил, что связывать протоны и нейтроны ядра может обмен известными легкими частицами (из которых самая известная — электрон) — как будто нуклоны все время перебрасываются мячиками из рук в руки. Это была новая идея. Новая и… неправильная. Тамм сам провел соответствующий расчет, убедился, что сила слишком мала, и опубликовал свой отрицательный результат. По пути, намеченному Таммом, пошел в 1935 году японский теоретик Хидэки Юкава, который не стал заранее назначать частицу, обмен которой связывает нуклоны в ядре. И получил результат — такая частица должна была бы иметь массу в 200 раз больше массы электрона, а поскольку такой частицы никто не наблюдал, грустно заметил он, «изложенная теория находится, по-видимому, на неверном пути»19.
Однако путь был верный. Через два года, в 1937 году, экспериментаторы открыли частицу с такой массой. Ее назвали «мезон», от греческого слова, означающего «промежуточный», — средний по массе между электроном и протоном. Нашли частицу, но не закон ядерного взаимодействия. Физики не догадывались тогда, что путь им предстоит извилистый: найденная частица — не та, которую предсказал Юкава. Убедятся они в этом только через десять лет, когда, к счастью для научного прогресса, тут же найдут «ту» частицу и передадут ей имя «мезон».
А пока — все следующее десятилетие — проблема ядерных сил стояла перед физикой, и все следующее десятилетие Тамм видел эту проблему перед собой.
Десятилетие это было самым черным в жизни Тамма. В 1937-м он лишился троих близких ему людей: младшего брата, друга юности и любимого ученика. Почему его самого не объявили врагом народа, понять трудно, но в хаосе Большого террора таких непонятных вещей много. Ясно лишь, что звание члена-корреспондента Академии наук тогда никого не защищало и ядерной физике было еще далеко до стратегической профессии.
Потери Тридцать седьмого повлекли за собой «оргвыводы» — ректор университета «порекомендовал» Тамму подать в отставку с должности заведующего кафедрой теоретической физики. А после ареста в 1938 году сотрудника ФИАНа Руме-ра «приняли меры» и в Академии наук. Из-за «необеспеченности руководства со стороны заведующего отделом [Тамма], недостаточной работы по подготовке кадров» теоротдел закрыли, а его сотрудников распределили по лабораториям20.
Затем мрачные годы войны и эвакуации института в Казань до осени 1943 года. Лишь после возвращения ФИАНа в Москву теоротдел восстановили и Тамм занял свое прежнее место. Труднее было с творческой безработицей — за десятилетие ученый не решил ни одной задачи, сопоставимой с результатами предшествующих лет. Условия военного времени многое могут объяснить, но для страстной натуры Тамма такие объяснения мало что значили — значила бесплодность усилий построить теорию ядерных сил.
К природному энтузиазму Тамма добавлялось то, что в физику он входил в революционное для нее время, когда радикально менялись самые основные ее понятия: пространство, время, причинность. Осуществилась мечта алхимиков — ядерные «алфизики» научились превращать один элемент в другой. Выдающиеся теоретики, начиная с Бора, под впечатлением от удивительных экспериментов и революционного темпа перемен несколько лет даже серьезно обсуждали другую несбыточную мечту — вечный двигатель (но убедились, что это уже чересчур). А Тамму удалось внести вклад в понимание не-элементарности элементарных частиц.
Это теперь ясно, что революционный период в фундаментальной физике закончился в начале 1930-х годов. А поколение, на глазах которого революция совершалась, надолго сохранило революционный азарт. Азартный от рождения Тамм — в особенности. У него, настоящего профессионала, за плечами было семь первоклассных результатов, включая теорию излучения Вавилова — Черенкова (за которую ему предстояло получить Нобелевскую премию). Однако сам он больше всего ценил свою — неправильную в узком смысле — идею 1934 года о механизме ядерных сил. Тогда он имел дело с передним краем физического знания и выдвинутая им идея была шагом за тот край21.