Читаем Александр Михайлович Ляпунов полностью

Так решена была наконец задача Чебышева: среди фигур равновесия вращающейся жидкости в самом деле отыскались неэллипсоидальные, в том числе грушевидные. Но, доказав математически осуществимость грушевидных форм, Ляпунов категорически отверг возможность встретить их в реальной действительности. Для этого им недоставало весьма важного, можно сказать, наипервейшего качества — устойчивости.

Вывод Ляпунова ошеломил зарубежных ученых. Только что Дарвин, опираясь на формулы Пуанкаре, доказал устойчивость грушевидной фигуры, а математик из далекого Петербурга настаивает на прямо противоположном. В самой точной из наук, где, казалось бы, гарантированы объективность и однозначность результатов, сложилась нетерпимая ситуация: расчеты двух видных исследователей совпали с точностью до «наоборот». Причем в буквальном смысле. Ведь в качестве критерия устойчивости выступала некая математическая величина, которую требовалось подсчитать. Покажут вычисления, что она положительна, значит, грушевидная фигура устойчива. Если же в итоге всех выкладок признают ее отрицательной, ни о какой устойчивости не может быть и речи. И вот Дарвин получает эту величину со знаком «плюс», а Ляпунов — со знаком «минус». Есть от чего прийти в недоумение ученому люду!

Никому и в голову не приходило обвинить таких знаменитостей в неумении считать, хотя выкладки требовались на редкость трудоемкие и головоломные. Достаточно сказать, что Ляпунов проводил некоторые вычисления с точностью до четырнадцатого десятичного знака! Оба академика — и русский, и английский — уже зарекомендовали себя предыдущими своими математическими трудами. Но кто-то же из них ошибался, раз результаты их взаимно исключали друг друга? А может быть, неверны формулы Пуанкаре? Нет, репутация французского математика исключительно высока, чтобы бросить ему такой упрек. Да и не представляло особого труда убедиться в правильности опубликованных им выводов. И Дарвин, ни минуты не сомневаясь в справедливости формул, к которым он прибегнул, берется еще раз перевычислять величину, от значения которой зависел окончательный ответ. Затратив уйму сил и времени, снова пришел он к заключению, что она положительна. Убежденность его в своей правоте едва ли можно было теперь поколебать.

Не меньшее основание для уверенности имел Ляпунов. «Получив… результат, противоположный результату Дарвина, я обратился к проверке своих вычислений, — писал он. — Я выполнил это с большим старанием, переделывая вычисления несколько раз, но не нашел какой-либо заметной погрешности. Я должен, следовательно, заключить, что именно мой результат является верным». В отличие от английского коллеги Александр Михайлович не просто отвергает его результат, а указывает причину разительного несогласия их выводов. «Что касается моего расхождения с Дж. Дарвином, то его легко объяснить; оно проистекает от того, что наши вычисления основывались на совершенно различных формулах», — заметил Ляпунов в статье 1905 года.

Высчитываемая величина выступала у Дарвина и у Ляпунова в совершенно несхожих обличьях. Английский ученый отыскивал ее в виде суммы бесконечного количества слагаемых, каждое из которых меньше предыдущего, предшествующего ему. Ничего необычного в таком приеме нет. При решении теоретических и прикладных задач математики давно уже использовали бесконечные ряды. Как бы ни была необъятна совокупность составляющих их членов, в результате сложения получается конечная величина. К примеру, неограниченно продолжающийся ряд дробей 1/2, 1/4, 1/8 и так далее, в котором каждое последующее число вдвое меньше предыдущего, дает в сумме единицу. Разумеется, Дарвин не мог бессчетно раз складывать, чтобы произвести в абсолютной цельности величину, служившую ему критерием устойчивости. Он удовольствовался приближенными расчетами, суммировав некоторое количество первых слагаемых, самых больших. Так и поступают обыкновенно в приблизительных решениях. Ведь вклад неучтенных, отброшенных членов в общий, совокупный итог довольно незначителен. В приведенном выше ряду сумма первых трех чисел равна 7/8, то есть близка к единице, и только 1/8 приходится на долю нескончаемой вереницы дробей, не принятых во внимание.

У Ляпунова рассчитываемая величина выражалась не бесконечным рядом, а обычной формулой, конечным математическим выражением. Поэтому оценка, которой он руководился, была не приблизительной, а точной. Поскольку Дарвин принужден был в своих вычислениях пренебрегать неисчислимым множеством малых слагаемых, то в расчеты его, как полагал Александр Михайлович, замешалась ошибка, учесть которую он не смог и не захотел.

Перейти на страницу:

Похожие книги

Адмирал Советского Союза
Адмирал Советского Союза

Николай Герасимович Кузнецов – адмирал Флота Советского Союза, один из тех, кому мы обязаны победой в Великой Отечественной войне. В 1939 г., по личному указанию Сталина, 34-летний Кузнецов был назначен народным комиссаром ВМФ СССР. Во время войны он входил в Ставку Верховного Главнокомандования, оперативно и энергично руководил флотом. За свои выдающиеся заслуги Н.Г. Кузнецов получил высшее воинское звание на флоте и стал Героем Советского Союза.В своей книге Н.Г. Кузнецов рассказывает о своем боевом пути начиная от Гражданской войны в Испании до окончательного разгрома гитлеровской Германии и поражения милитаристской Японии. Оборона Ханко, Либавы, Таллина, Одессы, Севастополя, Москвы, Ленинграда, Сталинграда, крупнейшие операции флотов на Севере, Балтике и Черном море – все это есть в книге легендарного советского адмирала. Кроме того, он вспоминает о своих встречах с высшими государственными, партийными и военными руководителями СССР, рассказывает о методах и стиле работы И.В. Сталина, Г.К. Жукова и многих других известных деятелей своего времени.Воспоминания впервые выходят в полном виде, ранее они никогда не издавались под одной обложкой.

Николай Герасимович Кузнецов

Биографии и Мемуары
100 великих гениев
100 великих гениев

Существует много определений гениальности. Например, Ньютон полагал, что гениальность – это терпение мысли, сосредоточенной в известном направлении. Гёте считал, что отличительная черта гениальности – умение духа распознать, что ему на пользу. Кант говорил, что гениальность – это талант изобретения того, чему нельзя научиться. То есть гению дано открыть нечто неведомое. Автор книги Р.К. Баландин попытался дать свое определение гениальности и составить свой рассказ о наиболее прославленных гениях человечества.Принцип классификации в книге простой – персоналии располагаются по роду занятий (особо выделены универсальные гении). Автор рассматривает достижения великих созидателей, прежде всего, в сфере религии, философии, искусства, литературы и науки, то есть в тех областях духа, где наиболее полно проявились их творческие способности. Раздел «Неведомый гений» призван показать, как много замечательных творцов остаются безымянными и как мало нам известно о них.

Рудольф Константинович Баландин

Биографии и Мемуары
100 великих интриг
100 великих интриг

Нередко политические интриги становятся главными двигателями истории. Заговоры, покушения, провокации, аресты, казни, бунты и военные перевороты – все эти события могут составлять только часть одной, хитро спланированной, интриги, начинавшейся с короткой записки, вовремя произнесенной фразы или многозначительного молчания во время важной беседы царствующих особ и закончившейся грандиозным сломом целой эпохи.Суд над Сократом, заговор Катилины, Цезарь и Клеопатра, интриги Мессалины, мрачная слава Старца Горы, заговор Пацци, Варфоломеевская ночь, убийство Валленштейна, таинственная смерть Людвига Баварского, загадки Нюрнбергского процесса… Об этом и многом другом рассказывает очередная книга серии.

Виктор Николаевич Еремин

Биографии и Мемуары / История / Энциклопедии / Образование и наука / Словари и Энциклопедии