Читаем Алекс в стране чисел. Необычайное путешествие в волшебный мир математики полностью

Но одному математику времени тем не менее все-таки хватило, — такое нередко бывает в науке. В 1876 году, через два с половиной столетия после того, как Мерсенн предложил свой список, французский специалист по теории чисел Эдуар Люка изобрел метод, позволяющий проверить, являются ли числа вида 2n - 1 простыми, и выяснил, что Мерсенн был не прав по поводу числа 67 и, кроме того, он пропустил числа 61, 89 и 107. Потрясающе, однако, что Мерсенн оказался прав насчет числа 127. Люка применил свой метод для доказательства того, что число 2127 - 1 (то есть 170 141 183 460 4 69 231 731 687 303 715 884 105 727) — простое. Оно оставалось самым большим известным простым числом до наступления века компьютеров. Люка, однако, не смог определить, простое или нет число 2257 - 1 — оно было слишком большим для ручных вычислений.

Несмотря на отдельные ошибки, список Мерсенна обессмертил своего создателя; простые числа вида 2n - 1 в наше время известны как простые числа Мерсенна.

* * *

Дабы выяснить, простое или нет число 2257 - 1, пришлось дожидаться наступления 1952 года. Для доказательства был использован метод Люка, правда при существенной поддержке. В том году в Институте численного анализа в Лос-Анджелесе собралась команда ученых. Они наблюдали за 24-футовыми барабанами с магнитной лентой, вводившейся в один из первых цифровых компьютеров, который назывался SWAC. Один только этот процесс занял несколько минут. Затем оператор ввел число, которое предстояло проверить: 257. Через долю секунды появился результат. Компьютер сообщил, что число 2257 - 1 — не простое.

Вечером того же дня, когда было получено, что число 2257 - 1 — не простое, в вычислительную машину один за другим были введены новые претенденты на право занять место в списке Мерсенна. SWAC отказал первым 42 из них. И только в 10 вечера появился результат: компьютер сообщил, что число 2521 - 1 — простое. Это число было наибольшим из простых чисел Мерсенна, выявленным за 75 лет, что, кстати, давало и соответствующее совершенное число 2520(2521 - 1) — всего лишь тринадцатое открытое за чуть ли не вдвое большее число столетий. Но число 2521 - 1 только два часа наслаждалось своим статусом старшего в колоде. Незадолго до полуночи SWAC подтвердил, что число 2607 - 1 тоже простое. За последующие несколько месяцев SWAC, работая на пределе своих возможностей, нашел еще три простых числа. 17 простых чисел Мерсенна были открыты в период с 1957 по 1996 год.

Начиная с 1952 года почти всегда наибольшим известным простым числом было простое число Мерсенна. Единственным исключением явилась трехлетняя интерлюдия между 1989 и 1992 годом, когда самым большим простым числом считалось (391 581 × 2216 193) - 1, которое, впрочем, относится к типу простых чисел, связанных с мерсенновскими простыми. Среди всех существующих простых чисел (а мы знаем, что их бесконечно много) в таблице наибольших открытых простых преобладают простые числа Мерсенна, поскольку они представляют собой прекрасную мишень для охотников за простыми числами. Лучшая тактика поиска больших простых чисел — это искать простые числа Мерсенна; другими словами, отправлять число 2n - 1 в компьютер при все больших и больших значениях n и использовать для проверки его простоты тест Люка — Лемера, представляющий собой усовершенствованный вариант упоминавшегося выше метода Эдуара Люка.

* * *

Самого влиятельного из охотников за простыми числами нашего времени привела на этот путь марка на конверте. В 1960-х годах, когда Джордж Уолтман был еще ребенком, его отец показал ему почтовую марку, на которой был изображен Университет Иллинойса и написано «211213 - 1 простое» — это был результат, только что установленный в этом университете. «Это меня просто потрясло — оказывается, можно доказать, что такое большое число — простое», — вспоминает он.

Уолтман внес немалый вклад в написание программ, существенным образом продвинувших поиск простых чисел. Все проекты, имевшие дело с масштабной обработкой чисел, как правило, выполнялись на суперкомпьютерах, доступ к которым ограничен. Начиная с 1990 года, однако, немало больших задач подвергались «нарезке» наподобие салями — работа разбивалась на части, которыми занимались тысячи меньших машин, связанных друг с другом через Интернет. В 1996 году Уолтман написал программу, которую пользователи могут бесплатно скачать, а установив ее, получить маленький кусок еще неисследованной части числовой прямой для поиска там простых чисел. Эта программа использует процессор, только когда ваш компьютер ничего не делает. Пока вы крепко спите, ваша машина занята тем, что перетряхивает числа на дальнем рубеже познания.

Перейти на страницу:

Все книги серии Galileo

Похожие книги

12 недель в году
12 недель в году

Многие из нас четко знают, чего хотят. Это отражается в наших планах – как личных, так и планах компаний. Проблема чаще всего заключается не в планировании, а в исполнении запланированного. Для уменьшения разрыва между тем, что мы хотели бы делать, и тем, что мы делаем, авторы предлагают свою концепцию «года, состоящего из 12 недель».Люди и компании мыслят в рамках календарного года. Новый год – важная психологическая отметка, от которой мы привыкли отталкиваться, ставя себе новые цели. Но 12 месяцев – не самый эффективный горизонт планирования: нам кажется, что впереди много времени, и в результате мы откладываем действия на потом. Сохранить мотивацию и действовать решительнее можно, мысля в рамках 12-недельного цикла планирования. Эта система проверена спортсменами мирового уровня и многими компаниями. Она поможет тем, кто хочет быть эффективным во всем, что делает.На русском языке публикуется впервые.

Брайан Моран , Майкл Леннингтон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
100 способов уложить ребенка спать
100 способов уложить ребенка спать

Благодаря этой книге французские мамы и папы блестяще справляются с проблемой, которая волнует родителей во всем мире, – как без труда уложить ребенка 0–4 лет спать. В книге содержатся 100 простых и действенных советов, как раз и навсегда забыть о вечерних капризах, нежелании засыпать, ночных побудках, неспокойном сне, детских кошмарах и многом другом. Всемирно известный психолог, одна из основоположников французской системы воспитания Анн Бакюс считает, что проблемы гораздо проще предотвратить, чем сражаться с ними потом. Достаточно лишь с младенчества прививать малышу нужные привычки и внимательно относиться к тому, как по мере роста меняется характер его сна.

Анн Бакюс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Детская психология / Образование и наука