Урок, извлекаемый из парадокса дней рождения, состоит в том, что совпадения происходят намного чаще, чем нам кажется. В немецкой лотерее «Lotto» у каждой комбинации чисел имеется один из 14 миллионов шанс на выигрыш. И однако же, в 1995 и в 1986 годах выиграла одна и та же комбинация: 15-25-27-30-42-48. Насколько невероятно такое совпадение? Не слишком, если разобраться. Между двумя появлениями одной и той же выигрышной комбинации лотерея разыгрывалась 3016 раз. Вычисление, позволяющее найти, сколько раз в розыгрыше должна появляться одна и та же комбинация, эквивалентно вычислению шанса на то, что найдутся совпадающие дни рождения в группе из 3016 человек, если всего имеется 14 миллионов возможных дней рождения. Искомая вероятность получается равной 0,28. Другими словами, имеется более чем 25-процентная вероятность того, что две выигрышные комбинации за этот период окажутся одинаковыми, так что произошедшее «совпадение» — не слишком нереалистичное событие.
Вот еще один случай. В 1985–1986 годах некая дама из Нью-Джерси дважды за четыре месяца стала победительницей лотереи, проводимой в ее родном штате. Повсюду говорили, что шансы такого исхода — один из 17 триллионов. Однако хотя вероятность купить выигрышный билет в каждой из двух лотерей и оба раза сорвать джекпот действительно равна единице на 17 триллионов, это не означает, что вероятность того, что кто-то где-то победит в двух лотереях, столь же мала. На самом деле такое вполне вероятно. Стивен Сэмюелс и Джордж Маккейб из Университета Пэрдью вычислили, что за период в семь лет вероятность двойного выигрыша в лотерею в Соединенных Штатах превосходит 50 процентов. Даже за период в четыре месяца имеется более одного шанса из 30 на появление двойного выигрыша в пределах страны. Перси Диаконис и Фредерик Мостеллер назвали это
С математической точки зрения лотереи — без сомнения наихудший вариант из всех ставок во всех азартных играх, дозволяемых законом. Даже самый наискупой игровой автомат предлагает вам процент возврата около 85 процентов. А в лотерее «Мега-Миллионс» процент возврата равен примерно 50. Лотереи — занятие, не представляющее никакого риска для организаторов, поскольку призовые деньги — это просто перераспределенные деньги, уже полученные ими. Или, как в случае лотереи «Мега-Миллионс», это распределение половины полученного.
В редких случаях, однако, лотереи могут оказаться наилучшим способом получить хороший выигрыш. Такое происходит, когда из-за «переходящего» джекпота заявленный выигрыш становится больше, чем цена покупки всех возможных комбинаций чисел. В таких случаях вы можете быть уверены, что получите выигрышную комбинацию. Риск состоит только в том, что могут найтись люди, у которых уже есть выигрышная комбинация, — и тогда вам придется разделить главный выигрыш с ними. Впрочем, подход «купи-все-комбинации» подразумевает способность сделать именно
Игроки в «Мега-Миллионс» должны выбрать пять чисел от 1 до 56 и одно от 1 до 46. Имеется около 175 миллионов возможных комбинаций. Как перечислить все эти комбинации таким образом, чтобы каждая из них встречалась только один раз, без дублирования? В начале 1960-х годов румынский математик Стефан Мандел задался этим вопросом относительно румынской лотереи, которая по масштабу гораздо меньше американских. Получить ответ оказалось совсем непросто. Мандел, однако, в конце концов решил задачу, правда потратив на нее несколько лет, и стал победителем в румынской лотерее 1964 года. (Он не скупил все комбинации, потому что это было бы слишком дорого, а применил вспомогательный метод, называемый «уплотнением», который гарантирует, что по крайней мере 5 из 6 чисел будут правильными. Обычно за угадывание 5 чисел полагается второй приз, но ему повезло, и он сразу же выиграл главный.) Записанный на бумаге алгоритм Мандела, позволяющий определить те комбинации, которые надо покупать, занял 8000 страниц. Вскоре после получения выигрыша он эмигрировал в Израиль, а затем в Австралию.
Уже в Мельбурне Мандел основал международный синдикат по лотерейным ставкам, собрав с его участников достаточно денег для того, чтобы при желании иметь возможность скупить все комбинации в лотерее. Он следил за проводимыми по всему миру лотереями с переходящими джекпотами, как минимум в три раза превышающими суммарную цену покупки всех комбинаций. В 1992 году в поле его зрения попала лотерея штата Виргиния, в которой было семь миллионов комбинаций, а каждый билет стоил 1 доллар, при том что джекпот достиг почти 28 миллионов долларов. Тогда Мандел принялся за дело. Он печатал купоны в Австралии, заполнял их на компьютере так, чтобы они охватили все семь миллионов комбинаций, а затем отправлял самолетом в Соединенные Штаты. И — получил главный приз, а заодно и 135 000 вторых призов!