Если вероятность того, что ни у каких двух человек даты рождения не попадут на один и тот же день, меньше чем 0,5, то вероятность того, что по крайней мере у двух дни рождения совпадут, оказывается больше 0,5 (из шага 1). Так что в группе из 23 человек скорее окажется, что какие-то два человека родились в один и тот же день, чем наоборот.
Футбольные матчи предоставляют нам идеальную выборку, демонстрирующую, что реальные факты отвечают предсказаниям теории, потому что на поле всегда имеется 23 человека — две команды из и игроков и судья. Впрочем, рассмотрение с этой точки зрения финалов чемпионата мира показывает, что парадокс дней рождения работает чуть-чуть
Частично это следует отнести на счет закона больших чисел. Если бы я анализировал
Если у вас под рукой нет группы из 23 человек, чтобы проверить это, займитесь своими ближайшими родственниками. При наличии четырех человек имеется 70-процентная вероятность, что у двух из них дни рождения придутся на один и тот же месяц. Всего лишь семь человек требуется, чтобы вероятным оказался факт рождения двоих из них в одну и ту же неделю, а в группе из 14 человек имеется пятидесятипроцентная вероятность, что два дня рождения отстоят друг от друга не более чем на один день. По мере роста группы вероятность растет на удивление быстро. В группе из 35 человек шансы на наличие совпадающего дня рождения составляют 85 процентов, а в группе из 60 — уже более 99 процентов.
А вот другой вопрос по поводу дней рождения, ответ на который настолько же противоречит интуиции, как и парадокс дней рождения: сколько людей должно быть в группе, чтобы с более чем 50-процентной вероятностью чей-нибудь день рождения совпадал с вашим? Это совсем не то же самое, что парадокс дней рождения, потому что вы задаете конкретную дату. При рассмотрении парадокса дней рождения нас не волнует, у кого именно и с кем совпадут дни рождения; надо найти всего лишь совпадающий день рождения. А наш новый вопрос можно переформулировать так: при заданной фиксированной дате сколько раз надо бросать нашу кость с 365 сторонами, чтобы выпала указанная дата? Ответ: 253 раза! Другими словами, придется собрать группу из 253 человек всего лишь для того, чтобы с вероятностью больше 50 процентов у кого-то из них день рождения совпал с вашим. Это число кажется абсурдно большим — заметим, что оно обитает заметно дальше середины отрезка между единицей и числом 365. И тем не менее именно случайность обеспечивает появление этих совпадений — такой размер группы необходим потому, что дни рождения людей не распределены регулярным образом. Среди этих 253 человек окажется много тех, у кого дни рождения совпадают (не совпадая при этом с вашим!), и все это тоже надо учесть.