Читаем Алекс в стране чисел. Необычайное путешествие в волшебный мир математики полностью

Прежде чем говорить о том, как связаны число фи и последовательность Фибоначчи, давайте изучим саму последовательность. Природа тяготеет к числам Фибоначчи. Заглянув в сад, вы обнаружите, что у большинства цветков число лепестков равно числам Фибоначчи. У лилий и ирисов — три лепестка, у гвоздик и лютиков — пять, у дельфиниума — восемь, у ноготков — 13, у астр — 21, а у маргариток — 55 или 89. Каждый цветок может и не иметь всегда в точности столько лепестков, но в среднем их число будет одним из чисел Фибоначчи. Например, на стебле клевера обычно три листочка — это тоже число Фибоначчи. Лишь очень редко у клевера бывает четыре листочка, поэтому четырехлистный клевер считается особенным. Они встречаются редко как раз потому, что 4 — не число Фибоначчи.

Числа Фибоначчи встречаются также в спиральных узорах, которые образуют чешуйки сосновых шишек и ананасов, соцветия цветной капусты и семена подсолнухов. Можно пересчитывать витки спирали по часовой стрелке или против — все, что вы насчитаете в любом направлении, будет числами Фибоначчи. На ананасах, как правило, 5 и 8 спиралей, или же 8 и 13. На еловых шишках их обычно 8 и 13. У подсолнухов спиралей может быть 21 и 34 или же 34 и 55 — хотя известны примеры с 144 и 233 спиралями. Чем больше семян в подсолнухе, тем больше оказывается число спиралей.

Последовательность Фибоначчи называется так потому, что ее члены впервые появились в написанной Фибоначчи книге «Liber Abaci», в связи с задачей о кроликах. Однако свое имя эта последовательность приобрела лишь через более чем 600 лет после выхода книги — в 1877 году, когда ее изучал теоретико-числовик Эдуар Люка. Именно он решил воздать должное Фибоначчи, назвав последовательность его именем.

В книге «Liber Abaci» эта последовательность возникла из следующей задачи. Пусть у нас имеется пара кроликов, которая через месяц дает потомство — появляется еще пара кроликов. Если у каждой взрослой пары кроликов каждый месяц появляется потомство — пара крольчат, — а крольчатам требуется один месяц, чтобы стать взрослыми, то сколько кроликов получится от первой пары через год? Ответ на этот вопрос можно получить, пересчитывая кроликов из месяца в месяц. В первый месяц имеется всего одна пара. В второй месяц — две, поскольку исходная пара произвела новую. На третий месяц имеется три пары, потому что исходная пара снова размножилась, но другая пара лишь достигла зрелости. На четвертый месяц обе пары взрослых кроликов размножились, что добавит двойку к имеющейся тройке. Последовательность Фибоначчи — это полное число пар, подсчитанное месяц за месяцем:

 Полное число пар
1-й месяц: 1 взрослая пара1
2-й месяц: 1 взрослая пара и 1 пара крольчат2
3-й месяц: 2 взрослые пары и 1 пара крольчат3
4-й месяц: 3 взрослые пары и 2 пары крольчат5
5-й месяц: 5 взрослых пар и 3 пары крольчат8
6-й месяц: 8 взрослых пар и 5 пар крольчат13

Важное свойство последовательности Фибоначчи состоит в том, что она рекуррентная, — то есть каждый новый член порождается предыдущими. Это же помогает понять, почему числа Фибоначчи настолько распространены в природе. Многие живые организмы растут, следуя рекуррентному процессу.

* * *

Последовательность Фибоначчи не только описывает формирование плодов и процесс безостановочного размножения кроликов, но и обладает разнообразными увлекательными математическими свойствами. Закономерность будет легче увидеть, если мы выпишем первые 20 чисел. Каждое число Фибоначчи традиционно записывается с использованием буквы F, снабженной нижним индексом, который обозначает положение данного числа в последовательности:

F0 = 0.   
F1 = 1.F6 = 8,F11 = 89,F16 = 987,
F2 = 1.F7 = 13,F12 = 144.F17 = 1597,
F3 = 2,F8 = 21,F13 = 233,F18 = 2584,
F4 = 3,F9 = 34,F14 = 377,F19 = 4181,
F5 = 5,F10. = 55,F15 = 610,F20 = 6765.

При более близком рассмотрении удается заметить, что наша последовательность воспроизводит саму себя многими и весьма неожиданными способами. Взглянем на числа F3, F6, F9другими словами, на каждое третье F-число. Все они делятся на 2. А числа F4, F8, F12 то есть каждое четвертое F-число — делятся на 3. Каждое пятое F-число делится на 5, каждое шестое F-число делится на 8, и каждое седьмое — на 13. Эти делители в точности являются F-числами из самой последовательности.

Другой впечатляющий пример получается при вычислении 1/F11, то есть 1/89. Это число равно сумме чисел

0,0

0,01

0,001

0,0002

0,00003

0,000005

0,0000008

0,00000013

0,000000021

0,0000000034

Таким образом, здесь снова высовывает голову последовательность Фибоначчи[51].

Перейти на страницу:

Все книги серии Galileo

Похожие книги

12 недель в году
12 недель в году

Многие из нас четко знают, чего хотят. Это отражается в наших планах – как личных, так и планах компаний. Проблема чаще всего заключается не в планировании, а в исполнении запланированного. Для уменьшения разрыва между тем, что мы хотели бы делать, и тем, что мы делаем, авторы предлагают свою концепцию «года, состоящего из 12 недель».Люди и компании мыслят в рамках календарного года. Новый год – важная психологическая отметка, от которой мы привыкли отталкиваться, ставя себе новые цели. Но 12 месяцев – не самый эффективный горизонт планирования: нам кажется, что впереди много времени, и в результате мы откладываем действия на потом. Сохранить мотивацию и действовать решительнее можно, мысля в рамках 12-недельного цикла планирования. Эта система проверена спортсменами мирового уровня и многими компаниями. Она поможет тем, кто хочет быть эффективным во всем, что делает.На русском языке публикуется впервые.

Брайан Моран , Майкл Леннингтон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
100 способов уложить ребенка спать
100 способов уложить ребенка спать

Благодаря этой книге французские мамы и папы блестяще справляются с проблемой, которая волнует родителей во всем мире, – как без труда уложить ребенка 0–4 лет спать. В книге содержатся 100 простых и действенных советов, как раз и навсегда забыть о вечерних капризах, нежелании засыпать, ночных побудках, неспокойном сне, детских кошмарах и многом другом. Всемирно известный психолог, одна из основоположников французской системы воспитания Анн Бакюс считает, что проблемы гораздо проще предотвратить, чем сражаться с ними потом. Достаточно лишь с младенчества прививать малышу нужные привычки и внимательно относиться к тому, как по мере роста меняется характер его сна.

Анн Бакюс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Детская психология / Образование и наука