На работе он рассказал о своих открытиях коллегам, но те отнеслись к этому как к чудачеству. Это не остановило его — он продолжал развивать свои идеи, и в 1978 году опубликовал статью с их подробным изложением в «Journal of Prosthetic Dentistry».
— И тогда люди этим заинтересовались, — говорит он. — Сейчас ни одна лекция о зубной эстетике не обходится без раздела о золотой пропорции.
Левин постоянно использовал число фи в своей работе, так что в начале 1980-х годов он попросил одного инженера сделать для него инструмент, с помощью которого можно было бы определить, находятся ли два зуба в золотой пропорции. В результате появился трехзубый калибр золотого сечения. Старый дантист сейчас продолжает продавать его своим коллегам по всему миру.
Левин рассказал мне, что его калибр стал для него больше чем просто инструментом для работы — он начал измерять и другие объекты, не только зубы, и — обнаружил число фи в структуре цветов, в распределении веток вдоль ствола дерева и листьев вдоль веток. Он брал с собой калибр, когда уезжал в отпуск, и находил число фи в пропорциях зданий. Кроме того, он видел число фи в различных частях человеческого тела: в длине фаланг пальцев и в относительном расположении носа, губ и подбородка. В конце концов он выяснил, что число фи присутствует в почерке большинства людей — как, например, в моем.
Чем больше Левин искал число фи, тем чаще он его находил.
— Я обнаружил так много совпадений, что поневоле стал задумываться, что бы все это значило. — Он открыл свой лэптоп и показал мне фотографии, на каждой из которых все три зубца калибра в точности указывали, где скрывалось золотое сечение. Там были изображения крыльев бабочки, перьев павлина, ЭКГ здорового человеческого сердца, картины Мондриана и даже автомобиль.
Построив прямоугольник таким образом, что отношение двух его сторон равно числу фи, мы получаем так называемый «золотой прямоугольник», изображенный на рисунке.
Этот прямоугольник обладает тем полезным свойством, что если мы обрежем его вертикально, так, чтобы с одной стороны получился квадрат, то оставшаяся часть также будет золотым прямоугольником. Чудесной матери чудесное дитя. Если продолжить этот процесс, появляются внуки, правнуки и т. д., до бесконечности. Теперь в самом большом квадрате нарисуем четверть окружности, поставив циркуль в правый нижний угол и проведя им дугу из одного из соседних углов в другой. Повторим то же самое во втором по величине квадрате, поставив циркуль в левый нижний угол и прочертив еще четверть окружности; затем проделаем это с последующими, все уменьшающимися квадратами. Получившаяся кривая будет приближением к логарифмической спирали.
Настоящая логарифмическая спираль проходит через те же самые углы в тех же самых квадратах, но она закругляется более гладко, чем получившаяся у нас кривая, изображенная на рисунке, — наша кривая претерпевает небольшие скачки кривизны в тех местах, где соединяются четвертинки окружностей. В логарифмической спирали прямая линия, проведенная из центра спирали — «полюса», — пересекает саму спираль под одним и тем же углом во всех точках; по этой причине Декарт назвал логарифмическую спираль «равноугловой спиралью».
Логарифмическая спираль — одна из самых пленительных кривых в математике. Впервые ее свойства тщательно исследовал выдающийся швейцарский математик Якоб Бернулли (1654–1705). Он назвал ее
Фундаментальное свойство логарифмической спирали состоит в том, что, сколько бы она ни росла, она никогда не меняет форму. Бернулли выразил это фразой
Наиболее ошеломляющий пример логарифмической спирали в природе — раковина головоногого моллюска. По мере роста раковины каждая последующая камера имеет больший размер, сохраняя при этом ту же форму, что и предыдущая. Единственная спираль, образованная из частей с одинаковыми относительными размерами, — это