Период полураспада 56Ni составляет 6,1 суток, в то время как у 56Co он равен 77 суткам. В процессе этих распадов основная часть энергии выделяется в виде
Образование в процессе коллапса плотного ядра, почти целиком состоящего из столь «экзотической» субстанции, как радиоактивный 56Ni, представляется вполне возможным и даже закономерным. Можно показать, что для обеспечения энергетики взрыва масса такого ядра должна быть
Очень серьезным наблюдательным подтверждением справедливости гипотезы «радиоактивного никеля» является обнаружение в «послемаксимальном» спектре сверхновой 1972-е многочисленных эмиссионных линий железа. Решающим аргументом является недавнее обнаружение резонансных ультрафиолетовых линий поглощения в спектре горячей звезды, на которую проектируется остаток вспышки Сверхновой 1006 г.
Из того факта, что сверхновые II типа наблюдаются преимущественно в спиральных рукавах, следует вывод, что первоначальная масса этих взрывающихся звезд должна быть больше 7
Как уже говорилось раньше, в эллиптических галактиках вспыхивают только сверхновые I типа. Вспышки сверхновых в таких галактиках нелегко объяснить, так как процесс звездообразования там давно закончился. В Е-галактиках в современную эпоху должны быть только звезды с массой, меньшей солнечной, а такие звезды вспыхивать не могут. Тем не менее они вспыхивают. Шацман предложил изящную гипотезу, согласно которой вспышки в этих галактиках происходят в тесных двойных системах, одной из компонент которых является белый карлик. Когда в процессе эволюции вторая компонента начнет разбухать, газ станет из нее перетекать на белый карлик, совсем как в случае обычных новых звезд (см. § 14). После того как масса белого карлика превысит чандрасекаровский предел, произойдет взрыв.
С другой стороны, из наблюдений следует, что вспышки сверхновых I типа в спиральных и неправильных галактиках связаны с процессом звездообразования. Отсюда следует, что массы вспыхивающих звезд должны лежать в пределах 3—7
IV Звезды умирают
Глава 19 Нейтронные звезды и открытие пульсаров
Как уже говорилось во второй части этой книги, заключительная фаза эволюции звезды, наступающая после того, как будут в значительной степени исчерпаны ресурсы ее ядерного водородного горючего, существенно зависит от массы звезды. Мы подчеркиваем оговорку «существенно», так как, кроме первоначальной массы, на эволюцию звезды может влиять скорость и характер ее вращения, степень намагниченности, принадлежность звезды к тесной двойной системе (см. § 14) и, возможно, другие факторы. Все же роль первоначальной массы является решающей. В идеальном случае, когда рассматривается модель невращающейся, лишенной магнитного поля изолированной звезды, теория предсказывает три «исхода» жизни звезды в зависимости от ее первоначальной массы (см. часть II):