Читаем Звезды: их рождение, жизнь и смерть полностью

Такова общая картина взрыва массивной звезды, как она представляется из исследований Хойла и Фаулера. Из этой картины следует, что прежде чем взорваться, звезда должна была уже далеко продвинуться в своей эволюции. Существенно, что при этом радикально изменится химический состав ее недр. В частности, свыше половины массы звезды, представлявшей в начале эволюции водородно-гелиевую смесь, превратилось в легкие элементы. Непосредственной причиной, вызывающей взрыв звезды, является катастрофическое сжатие ее железного ядра в присутствии такого «холодильника», каким является скрытая теплота диссоциации железа на гелий и нейтроны. По-видимому, такой путь эволюции может быть типичным для достаточно массивных звезд. Поэтому описанная выше теория должна соответствовать вспышкам сверхновых II типа. Следует, однако, подчеркнуть, что несмотря на содержащиеся в этой теории ценные идеи, ее еще никак нельзя рассматривать как полное описание процессов, происходящих при вспышках сверхновых II типа. Так, например, эта теория совершенно не учитывает, что если вещество нагреется до температуры в несколько миллиардов кельвинов, там начнут в очень большом количестве образовываться нейтрино и антинейтрино. Эти частицы будут выходить из звезды, унося с собой огромное количество энергии.

Ядерные реакции, приводящие к образованию нейтрино () и антинейтрино (), выглядят следующим образом (так называемый «урка-процесс»):

(18.1)

Уже начиная с температуры T 0,5 109 К нейтринное излучение массивных звезд превосходит их фотонное излучение. По мере повышения температуры сжимающегося ядра мощность нейтринного излучения звезды растет в огромной степени. Особенно оно увеличивается после того как железо в центральных частях звезды окажется диссоциированным, т. е. на более поздней стадии сжатия. Так как после такой диссоциации железный «холодильник» перестанет существовать, начнется новое, довольно быстрое повышение температуры ядра. Когда последняя повысится до 20 миллиардов кельвинов (к тому времени плотность ядра уже будет около 1010 г/см3), начнется расщепление альфа-частиц и появится значительное количество свободных (т. е. не связанных в ядрах) протонов и нейтронов. Это приведет к резкому увеличению скорости образования нейтрино и антинейтрино (см. формулу (18.1)). Они будут выходить из ядра, унося оттуда огромное количество энергии. Тем самым появится новый, исключительно мощный «холодильник».

Огромная энергия нейтринного излучения черпается из гравитационной энергии сжимающегося ядра. Покидающие звезду нейтрино и антинейтрино имеют энергии около 10 МэВ, что значительно выше, чем энергия солнечных нейтрино (см. §§ 8 и 9). Когда температура сжимающегося ядра достигнет 40 миллиардов кельвинов, а плотность будет 3 1011 г/см3, возникнет новая ситуация: ядро звезды перестанет быть прозрачным для нейтрино. Последние будут поглощаться протонами и нейтронами (реакция (18.1), только читаемая справа налево!). Тем самым новый «холодильник» выключается, резко поднимается температура ядра, а процесс сжатия сильно замедляется. По-видимому, сжатие ядра прекращается совсем, когда его плотность достигает величины 3 1013 г/см3, а температура превосходит сто миллиардов кельвинов. Падающая на центр звезды оболочка останавливается, быстро нагревается, и «пороховой погреб» (т. е. легкие элементы в мантии) взрывается. Такова общая картина взрыва массивной звезды с учетом процессов образования нейтрино и антинейтрино в ее горячих, сжимающихся недрах. Заметим еще, что сжимающееся ядро может быстро перестать сжиматься еще по совершенно другой причине. Дело в том, что пока мы еще не учитывали вращения сжимающейся звезды. На основании известного из механики закона сохранения вращательного момента по мере сжатия звезды линейная скорость ее вращения быстро растет. Может возникнуть такая ситуация, что возникающие при этом огромные центробежные силы прекратят сжатие ядра звезды, как бы «застабилизировав» его. Тем самым остановится и сильно нагреется падающая на центр звезды «мантия» и создадутся условия для ядерного взрыва.

Перейти на страницу:

Все книги серии Проблемы науки и технического прогресса

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука