Читаем Звезды: их рождение, жизнь и смерть полностью

Результаты таких расчетов оказались весьма интересными. Прежде всего, стало очевидным, что если взрыв происходит в компактной, достаточно массивной звезде (например, звезде главной последовательности), то кривые блеска качественно отличаются от наблюдаемых. Прежде всего, максимум блеска оказывается очень резким и длится не больше чем 20 минут, в то время как согласно наблюдениям длительность максимума 1—2 суток. Кроме того, максимальный блеск оказывается очень незначительным — в сотни раз меньше наблюдаемого.

Для того чтобы получить кривую блеска, более или менее сходную с наблюдаемой (т. е. существенно увеличить длительность в максимуме и светимость), необходимо предположить, что звезда перед взрывом является гигантом или, лучше, сверхгигантом. Расчеты показывают, что при сильном взрыве радиус звезды почти не увеличивается — происходит только сильный нагрев атмосферы звезды ударной волной. В принципе, вместо красного сверхгиганта с протяженной атмосферой можно принять модель звезды, у которой происходит медленное истечение вещества с ее поверхности, в результате чего вокруг звезды образуется весьма протяженная оболочка, причем ее плотность уменьшается наружу примерно обратно пропорционально квадрату расстояния.

Развитая советскими авторами «гидродинамическая» теория взрыва массивной звезды хорошо согласуется с современной теорией звездной эволюции. Согласно этой теории (см. § 12) фаза красного гиганта или сверхгиганта является неизбежной. Начало этой фазы связано с коренной перестройкой структуры центральных областей звезды, создающей предпосылки для гравитационного коллапса ее ядра. Следовательно, образование весьма протяженной оболочки и способного к коллапсу ядра происходят «в одну эпоху» жизни звезды. Однако совпадение этих явлений вовсе не обязательно должно быть строгим. Возможно и даже весьма вероятно, что сравнительно кратковременная фаза красного гиганта закончится до гравитационного коллапса ядра. В этом случае, после потери наружной, богатой водородом оболочки, образуется довольно компактная «гелиевая» звезда типа Вольфа — Райе. Явление гравитационного коллапса, конечно, не зависит от того, есть ли вокруг звезды протяженная водородная оболочка или нет. Мы приходим к представлению, что почти все массивные звезды типа Вольфа — Райе должны взрываться как сверхновые. Так как длительность фазы Вольфа — Райе у массивных звезд сравнима с длительностью фазы красного гиганта, следует ожидать, что число взрывающихся звезд типа Вольфа — Райе должно быть сравнимо с числом взрывающихся массивных сверхгигантов.

Но, на основании расчетов Имшенника и Надежина, взрывающиеся компактные звезды типа Вольфа — Райе совершенно непохожи ни на какие сверхновые. Они на 5—6 величин слабее (в максимуме) и имеют ненаблюдаемо-узкий максимум на кривой блеска. Мы приходим, таким образом, к представлению о необходимости существования «карликовых сверхновых», открытых на кончике пера советскими теоретиками. Очень похоже, что таким объектом является Кассиопея А, а также Сверхновая 1181 г., светимость которой в максимуме была в сотню раз меньше обычной. Другим важным выводом из расчетов советских авторов является утверждение, что в тесных двойных системах не могут вспыхивать сверхновые II типа, так как перетекание масс в процессе эволюции компонент препятствует образованию протяженной, богатой водородом оболочки.

Необходимо еще раз подчеркнуть, что основным предположением, сделанным при расчетах распространения ударной волны в наружных слоях звезды, является постулат о мгновенном выделении энергии в ее центральной части. Можно, однако, предложить по крайней мере два механизма постепенного (т. е. достаточно медленного) выделения энергии. Первый механизм связан с образованием в центре коллапсирующей звезды быстро вращающегося намагниченного пульсара. Тормозясь, такой пульсар будет непрерывно выделять энергию в виде жестких фотонов и корпускул. Мощность энерговыделения молодого пульсара более чем достаточна для «накачки» энергии в оболочку пульсара, но конкретные условия работы такой «машины» еще далеко неясны.

Другим механизмом непрерывной накачки энергии в оболочку взорвавшейся звезды является радиоактивность образующихся в процессе коллапса некоторых ядер. Эта гипотеза с очевидной легкостью объясняет экспоненциальный характер кривых блеска сверхновых I типа после максимума: показатель экспоненты определяется периодом полураспада соответствующего «рабочего изотопа»). В качестве последнего Бааде и др. еще в 1956 г. предложили... трансурановый элемент калифорний-254. Ядра этого изотопа спонтанно делятся на осколки с энергией 200 МэВ. Гипотеза эта, единственным обоснованием которой является подходящее значение периода полураспада 254Cf, по ряду причин оказалась совершенно несостоятельной.

На смену 254Cf пришли другие «рабочие вещества». В последние годы в качестве такого вещества теоретики используют радиоактивный изотоп никеля-56, дающий начало цепи -радиоактивных превращений:

Перейти на страницу:

Все книги серии Проблемы науки и технического прогресса

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука