Читаем Звезды: их рождение, жизнь и смерть полностью

Сразу же после открытия этого ярчайшего радиоисточника невольно поразило то обстоятельство, что на его месте решительно ничего примечательного в оптических лучах не наблюдается. Создавалось впечатление, что мощнейший поток радиоизлучения приходит к нам, что называется, «из пустого места». Однако через три года, в 1951 г., Смит существенно уточнил координаты этого радиоисточника, что позволило американским астрономам Бааде и Минковскому обнаружить на этом месте очень слабую, совершенно необычную туманность, несомненно, связанную с источником радиоизлучения. Дальнейшие исследования показали, что этот источник имеет хотя и небольшие, но вполне определенные угловые размеры — около 5 минут дуги. Клочья и обрывки слабой оптической туманности как раз заполняют всю область, занимаемую источником радиоизлучения.

Весьма характерен радиоспектр Кассиопеи А. Он хорошо представляется степенным законом (см. рис. 16.8 на стр. 459)

(16.4)

где  — частота, а 0,8 во всем диапазоне частот от метровых до сантиметровых волн. Величина называется «спектральным индексом», a F — «спектральная плотность потока», определяемая как количество энергии, проходящее через единицу поверхности за единицу времени в единичном интервале частот. Заметим, что степенной спектр является типичным для большинства источников космического радиоизлучения. Различные источники отличаются значениями спектрального индекса , который, впрочем, как правило, меняется в не слишком широких пределах. Такой характер спектра тесно связан с механизмом радиоизлучения, о чем речь будет идти ниже.

После 1948 г. в нашей Галактике было открыто несколько источников радиоизлучения, связанных с остатками вспышек сверхновых. В следующем, 1949 г. австралийскими радиоастрономами было обнаружено радиоизлучение от Крабовидной туманности — остатка вспышки сверхновой 1054 г. Через 3 года было обнаружено радиоизлучение от остатков вспышек сверхновых 1572 г. (Тихо) и 1604 г. (Кеплер). После этого был обнаружен протяженный (угловые размеры 3°) радиоисточник на месте системы волокнистых туманностей в созвездии Лебедя. Почти одновременно был обнаружен также протяженный источник радиоизлучения в созвездии Близнецов, на месте волокнистой туманности IС 443. Это открытие и дало основание считать эту туманность остатком вспышки сверхновой. В последующие годы было открыто довольно много таких объектов. Все они находятся около галактического экватора, что указывает на их весьма высокую концентрацию к галактической плоскости.

Как правило, остатки вспышек сверхновых представляют собой в рентгеновских и радиолучах неправильные, часто «неполные» оболочки с заниженной интенсивностью в центральной части (см. рис. 16.5). Около 10 лет тому назад у остатков вспышек сверхновых был выделен новый класс объектов, получивших название «плерионы». Это такие остатки, у которых яркость концентрируется к центральной части. Классическим объектом этого типа является знаменитая Крабовидная туманность (см. рис. 17.2), которой будет посвящен следующий параграф. Всего в настоящее время в Галактике известно около десятка плерионов. Наряду с Крабовидной туманностью, большой интерес представляет объект 3C 58, отождествляемый со вспышкой сверхновой, наблюдавшейся в качестве «звезды-гостьи» в 1181 г. Недавно на обсерватории «Эйнштейн» в центре этого объекта как будто бы наблюдался точечный источник.

Рис. 16.5: Рентгеновское изображение источника Кассиопея А. Получено на обсерватории «Эйнштейн».

Встречаются также «гибридные» комбинации плерионов и оболочечных источников. Хорошим примером такой морфологии является объект Паруса X. Похоже на то, что у плерионов радиоспектр значительно более «плоский», чем у «оболочечных» источников. Значение плерионов для радиоастрономии определяется их несомненной связью с пульсарами (см. § 20).

Рис. 16.6: Фотография туманности Кассиопея А в красных лучах.
Перейти на страницу:

Все книги серии Проблемы науки и технического прогресса

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука