Хотя разрешающая способность современных детекторов космического рентгеновского излучения еще низка (ем. введение), очень большие угловые размеры системы волокнистых туманностей в Лебеде позволяют получить хотя и грубое, но все же вполне реальное
Это объясняется, как мы уже говорили выше, неоднородным распределением плотности в окружающей взорвавшуюся звезду межзвездной среде. Можно заметить также грубое соответствие между распределением рентгеновского и оптического излучений.
Мы уже упоминали о рентгеновском телескопе, установленном на обсерватории «Эйнштейн». Этот прибор работал в мягком рентгеновском диапазоне, регистрируя кванты с энергией в интервале 0,1—4,5 кэВ. Он обладал неслыханной до этих пор чувствительностью — до 3
С помощью этого рентгеновского телескопа был выполнен ряд выдающихся по своему значению наблюдений. В частности, проводилось систематическое исследование остатков вспышек сверхновых. Всего было получено свыше 100 рентгеновских изображений таких объектов. Другими словами, были исследованы
Рис. 16.4: Рентгеновские изображения тонковолокнистых туманностей в созвездии Лебедя в двух спектральных участках. |
До сих пор речь шла об оптическом и рентгеновском излучении туманностей, образовавшихся после вспышек сверхновых. Оба эти вида излучения являются простым следствием высокой температуры в плазме, образующейся за фронтом распространяющейся от очага взрыва ударной волны в межзвездной среде. Однако уже на заре радиоастрономии было обнаружено, что остатки вспышек сверхновых являются мощными источниками радиоизлучения совершенно особой природы. Обнаружение радиоизлучения от остатков вспышек сверхновых, бесспорно, является важнейшим этапом в истории изучения этих объектов. Как мы увидим дальше, исследование радиоизлучения является весьма эффективным методом анализа физических условий в расширяющихся оболочках — остатках взорвавшихся звезд. А это в свою очередь приближает нас к пониманию самого процесса взрыва звезд. Особый интерес представляет еще и то обстоятельство, что открывается возможность чисто радиоастрономическим методом определить расстояние до источников, что имеет, конечно, очень важное значение для понимания их природы. Перейдем теперь к изложению основных результатов наблюдений радиоизлучения остатков вспышек сверхновых.
В 1948 г. английские радиоастрономы Райл и Смит обнаружили на северном небе в созвездии Кассиопеи необыкновенно яркий источник радиоизлучения, названный ими «Кассиопея А». В то время радиоастрономия переживала начальный, «героический» период своего развития. Выдающиеся открытия, совершаемые бывшими офицерами радиолокационной службы, следовали одно за другим. За два года до открытия Кассиопеи А другая группа английских радиоастрономов открыла первый «дискретный» источник радиоизлучения на небе — знаменитый «Лебедь А», который, как выяснилось через 5 лет, представляет собой удаленную галактику. Это была первая радиогалактика! На метровых волнах поток радиоизлучения от Кассиопеи А почти в два раза превышает поток от Лебедя А и довольно близок к потоку радиоизлучения от «спокойного» Солнца (т. е. в периоды, когда нет пятен, вспышек и других проявлений активности). Тот факт, что весьма удаленный от нас космический объект посылает поток почти такой же, как и «рядом» находящееся Солнце, сам по себе поразителен. Он говорит о необычности космических явлений в радиодиапазоне и о коренном отличии этих явлений от оптических. Сейчас, спустя 35 лет после открытия Кассиопеи А, радиоастрономия шагнула далеко вперед. На пределе своих возможностей она может зарегистрировать потоки радиоизлучения, в миллионы раз меньшие, чем от Кассиопеи А. Подавляющее большинство слабых источников представляют собой метагалактические объекты. Только малая часть сравнительно ярких известных источников отождествляется с остатками вспышек сверхновых. Вернемся, однако, к Кассиопее А.