Читаем Звезды: их рождение, жизнь и смерть полностью

Уже один взгляд на спектр туманностей — остатков вспышек сверхновых, например, Кассиопеи А, говорит о том, что их излучение ничего общего с тепловым не имеет. Последнее на ограниченном интервале изменения можно также представить степенным законом F -, где меняется в пределах от 0 до -2, между тем как у остатков сверхновых спектральный индекс положителен ( 0,5 1,0) на большом интервале изменения частот (рис. 16.8). Далее, сама величина интенсивности радиоизлучения, особенно на низких частотах, достигает огромного значения. По формуле (16.6) мы всегда можем любой интенсивности привести в соответствие некоторую температуру. Последняя носит название «яркостной температуры» (см. § 4). Оказывается, что на метровых волнах интенсивности Кассиопеи А соответствует яркостная температура в сотни миллионов кельвинов. Между тем, как это следует из формулы (16.6), в случае теплового излучения яркостная температура просто равна температуре газа, которая, как правило, порядка десяти тысяч кельвинов. Нельзя также считать наблюдаемое радиоизлучение тепловым излучением весьма горячего газа за фронтом ударной волны, распространяющейся в остатках сверхновых (см. § 15). Вычисленная на основе наблюдаемого рентгеновского излучения (которое является тепловым) интенсивность радиоизлучения, оказывается, имеет ничтожно малую интенсивность. Кроме того, не следует забывать о полном несоответствии наблюдаемых радиоспектров остатков сверхновых спектрам источников теплового радиоизлучения.

Рис. 16.8: Радиоспектр туманности Кассиопея А.

Правильная идея, объясняющая радиоизлучение остатков сверхновых (так же как и большинства других источников космического радиоизлучения), была предложена в 1950 г. шведскими физиками Альвеном и Херлофсоном и, независимо, немецким астрофизиком Кипенхойером. В последующие годы эта идея во всех деталях была разработана главным образом в СССР и доведена до уровня весьма совершенной теории. Ее применение к конкретным астрономическим объектам, в частности, к остаткам сверхновых, оказалось очень плодотворным. На основе новой теории удалось объяснить большое количество астрономических наблюдаемых фактов и предсказать ряд новых, которые полностью подтверждались специально поставленными наблюдениями. Что же это за теория?

Из физики уже давно известно, что если электрон движется во внешнем магнитном поле H, то он излучает характерную частоту H = eH/2mec, где e — заряд электрона, me — его масса. Это та частота, с которой электрон вращается вокруг перпендикулярных к направлению его скорости силовых линий магнитного поля. Если энергия электрона E очень велика и превосходит его энергию покоя mec2 (такой электрон называется «релятивистским»), то характер излучения претерпевает качественные изменения. Прежде всего такой электрон будет излучать не одну определенную частоту, а непрерывный спектр, т. е. огромное количество тесно примыкающих друг к другу частот, причем максимальная интенсивность его излучения будет приходиться на частоту

(16.8)

Со стороны низких частот, т. е. для m, интенсивность будет медленно расти с частотой как 1/3, а для m круто обрываться. Другой важной особенностью излучения релятивистских электронов является его направленность. Почти все излучение релятивистского электрона будет сосредоточено внутри конуса, ось которого совпадает с направлением мгновенной скорости его движения, а угол раствора = mec2/E. Излучение такого типа давно известно физикам, работающим на ускорителях. Оно получило удачное название «синхротронного».

Для того чтобы «почувствовать» порядок входящих в формулы синхротронного излучения величин, напомним, что энергия покоя электрона mec2 = 5 105 эВ, H = eH/2mec = 2,8 106H. Пусть в магнитном поле движется электрон с энергией E = 109 эВ, что соответствует энергии мягких космических лучей. Тогда он будет излучать непрерывный спектр, максимальная интенсивность которого будет приходиться на частоту m = 1,4 1062H = 1013H. Если напряженность магнитного поля порядка напряженности межзвездных полей, т. е. H 10-5, то m 108 Гц, чему соответствует длина волны = 3 м. Это характерный диапазон радиоизлучения Галактики. Если бы электрон был нерелятивистским, он излучал бы только одну частоту H 30 Гц, чему соответствует длина волны около 10 000 км. Такое излучение с помощью наземных радиотелескопов наблюдать нельзя — вспомним, что ионосфера пропускает только радиоволны более короткие, чем 30 м. Да и космические радиотелескопы, которые, как можно полагать, в недалеком будущем будут установлены на специальных спутниках, такое «сверхдлинноволновое» радиоизлучение от нерелятивистских электронов вряд ли смогут зарегистрировать. Итак, самой «полезной» особенностью релятивистских электронов является их способность излучать сравнительно высокие, доступные наблюдениям частоты в очень слабых магнитных полях.

Перейти на страницу:

Все книги серии Проблемы науки и технического прогресса

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука