В раннем возрасте Билл Тёрстон получил необычное образование. Нью-Колледж во Флориде принимал небольшое число учащихся, отобранных за выдающиеся способности, и почти никак не ограничивал ни их занятия, ни даже место жительства. Иногда Тёрстон по несколько дней жил в палатке в лесу; иногда, обманув охранника, ночевал в здании школы. Через полтора года школа едва не закрылась, когда половина ее учителей одновременно решила уволиться. Его дни в Университете в Беркли текли несколько более организованно, но время тогда само по себе было бурным: студенты активно протестовали против войны во Вьетнаме. Тёрстон стал членом комитета, который пытался убедить математиков не принимать финансирование от военных. К тому моменту он был женат на Рэчел Файндли, у них родился первенец. Ребенок, как говорила Рэчел, был рожден отчасти для того, чтобы Тёрстона не призвали в армию. Роды начались в день, когда Тёрстон должен был защищать диссертацию на докторскую степень, и его выступление получилось несколько сумбурным – однако, как всегда, оригинальным. Темой его диссертации стали некоторые особые задачи по популярной на тот момент теме расслоений, при которых многомерное пространство (или многообразие) разбивается на плотно прилегающие друг к другу «листы», как книга разделяется на листы, но с меньшей регулярностью их расположения. Эта тема связана с топологическим подходом к динамическим системам. В диссертации содержится несколько важных результатов, но она так и не была опубликована. Расслоения стали для Тёрстона первой серьезной темой исследования, и он продолжил работу над ними в Институте высших исследований в Принстоне в 1972–1973 гг. и в Массачусетском технологическом в 1973–1974 гг. Мало того, он решил так много фундаментальных задач этой области, что в конечном итоге, с точки зрения других математиков, он, по существу, закрыл тему.
В 1974 г. Тёрстон стал профессором Принстонского университета (не путать с Институтом высших исследований, в котором не учат студентов). Несколько лет спустя фокус его исследований переместился в одну из самых сложных областей топологии – к исследованию трехмерных многообразий. Эти пространства аналогичны поверхностям, но имеют одно дополнительное измерение. Их исследование начал более 100 лет назад Пуанкаре (глава 18), но, пока в дело не вступил Тёрстон, они ставили всех в тупик. Топология многообразий высоких размерностей достаточно любопытна. Простейшие размерности – один (это тривиально) и два (это поверхности, и решается все классически). Следующими по простоте оказались размерности пять и выше – в основном потому, что в пространствах высоких размерностей хватает простора для сложных маневров. Но даже в этом случае задачи сложны. Еще сложнее четырехмерные многообразия, а самые сложные – трехмерные многообразия; места в них достаточно для громадной сложности, но не хватает для упрощения сколько-нибудь простым и понятным способом.
Стандартный способ построения
И тут на сцене появляется Тёрстон и переворачивает ситуацию с ног на голову.
Топология – это геометрия резинового листа, и вопрос Пуанкаре был топологическим. Естественно, все пытались искать ответ на него топологическими методами. Тёрстон же выбросил пресловутый резиновый лист и подумал: а не геометрической ли на самом деле является эта задача? Он не решил ее, но через несколько лет его идеи вдохновили молодого российского математика Григория Перельмана на ее решение.